

SCIENCE PASSION TECHNOLOGY

Data Integration and Large Scale Analysis 01 Introduction and Overview

Shafaq Siddiqi

Graz University of Technology, Austria

Announcements/Org

- #1 Video Recording
 - Link in TUbe & TeachCenter
 - Optional attendance (independent of COVID)
 - Hybrid, in-person but video-recorded lectures
 - HS i5 or Webex: https://tugraz.webex.com/meet/shafaq.siddiqi
- #2 Course Registration (as of Oct 07)
 - Data Integration and Large-Scale Analysis (DIA)

WS20/21: 96 (2) WS21/22: 122 (4) WS21/22: 134 (2)

TUbe

Agenda

- Course Organization
- Course Outline and Projects
- Course Motivation and Goals
- Excursus: Apache SystemDS

About Me

- **09/2019 TU Graz**, Austria
 - Teaching Assistant, TU Graz
 - Institute of Interactive Systems and Data Science, CSBME (ML systems internals, end-to-end data science lifecycle) https://github.com/apache/systemds

2017-2019 Sukkur IBA University

- Lecturer (Computer Science)
- Teaching and supervising FYPs in Bachelor programs
- 2020 PhD Student TU Graz, Austria
 - Data preprocessing for Heterogeneous Large Scale Data
 - Generation and Optimization of Data Cleaning Pipelines
 - https://damslab.github.io/

ISD

Course Organization

Basic Course Organization

Staff

Lecturer: M.Sc. Shafaq Siddiqi, ISDS

Language

- Lectures and slides: English
- Communication and examination: English

Course Format

- VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
- Weekly lectures (Fri 3pm, including Q&A), attendance optional
- Mandatory exercises or programming project (2 ECTS)
- Recommended papers for additional reading on your own

Prerequisites

- Preferred: course Data Management / Databases is very good start
- Sufficient: basic understanding of SQL / RA (or willingness to fill gaps)
- Basic programming skills (Python, R, Java, C++)

Course Logistics

Website

7

- https://shafaq-siddiqi.github.io./dia2022.html
- All course material (lecture slides) and dates
- Video Recording Lectures (TUbe)?

TUbe

Communication

- Informal language (first name is fine)
- Please, immediate feedback (unclear content, missing background)
- Newsgroup: N/A email is fine, TeachCenter forum for discussions
- Office hours: Tuesday 11:00 am 12:00 pm & by appointment or after lecture
- Exam
 - Completed exercises or project
 - Final written exam (oral exam if <25 students take the exam)
 - Grading (30% project/exercises completion, 70% exam)

Course Logistics, cont.

Course Applicability

- Bachelor programs computer science (CS), as well as software engineering and management (SEM)
- Master programs computer science (CS), as well as software engineering and management (SEM)
 - Catalog Data Science: compulsory course in major/minor
- Free subject course in any other study program or university

Course Outline and Projects

Part A: Data Integration and Preparation

Data Integration Architectures

- 01 Introduction and Overview [Oct 07]
- 02 Data Warehousing, ETL, and SQL/OLAP [Oct 14]
- 03 Message-oriented Middleware, EAI, and Replication [Oct 21]

Key Integration Techniques

- 04 Schema Matching and Mapping [Oct 28]
- 05 Entity Linking and Deduplication [Nov 04]
- 06 Data Cleaning and Data Fusion [Nov 11]

Part B: Large-Scale Data Management & Analysis

Cloud Computing

- O7 Cloud Computing Foundations [Nov 18]
- 08 Cloud Resource Management and Scheduling [Nov 25]
- 09 Distributed Data Storage [Dec 02]

Large-Scale Data Analysis

- 10 Distributed, Data-Parallel Computation [Jan 13]
- **11 Distributed Stream Processing** [Jan 20]
- 12 Distributed Machine Learning Systems [Jan 27]

Overview Projects or Exercises

- Team
 - 1-3 person teams (w/ clearly separated responsibilities)
- Objectives
 - Non-trivial programming project in DIA context (2 ECTS → 50 hours)
 - Exercise: Data engineering and ML pipeline
 - Data cleaning and integration of multi-modal data sources
 - ML model training and evaluation
 - Optional: Open source contribution to Apache SystemDS <u>https://github.com/apache/systemds</u> (from HW to high-level scripting)

Timeline

- Oct 21: Exercise description
- Jan 13: Final project/exercise deadline

13

Course Motivation and Goals

Data Sources and Heterogeneity

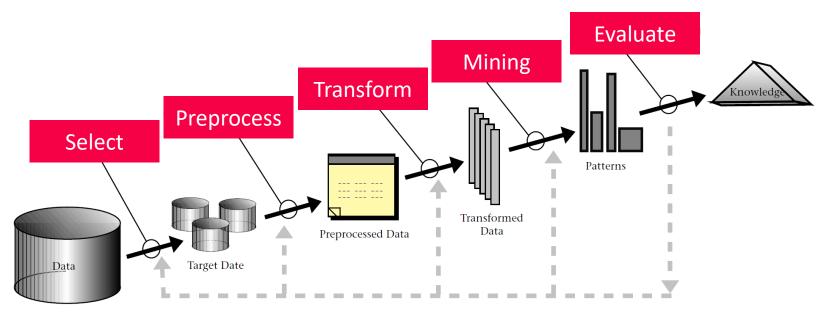
- Terminology
 - Integration (Latin integer = whole): consolidation of data objects / sources
 - Homogeneity (Greek homo/homoios = same): similarity
 - Heterogeneity: dissimilarity, different representation / meaning

Heterogeneous IT Infrastructure

- Common enterprise IT infrastructure contains >100s of heterogeneous and distributed systems and applications
- E.g., health care data management: 20 120 systems

Multi-Modal Data (example health care)

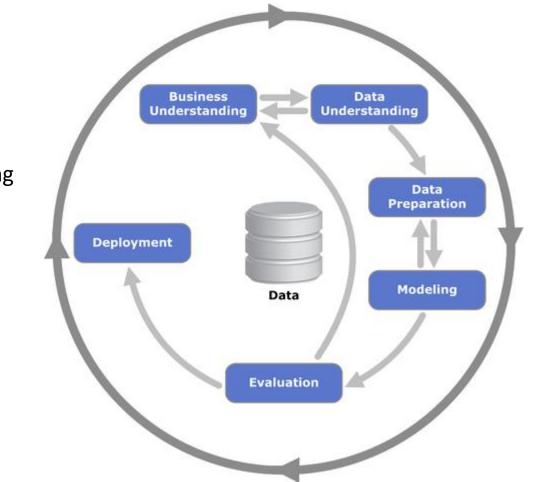
- Structured patient data, patient records incl. prescribed drugs
- Knowledge base drug APIs (active pharmaceutical ingredients) + interactions
- Doctor notes (text), diagnostic codes, outcomes
- Radiology images (e.g., MRI scans), patient videos
- Time series (e.g., EEG, ECoG, heart rate, blood pressure)



The Data Science Lifecycle

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive

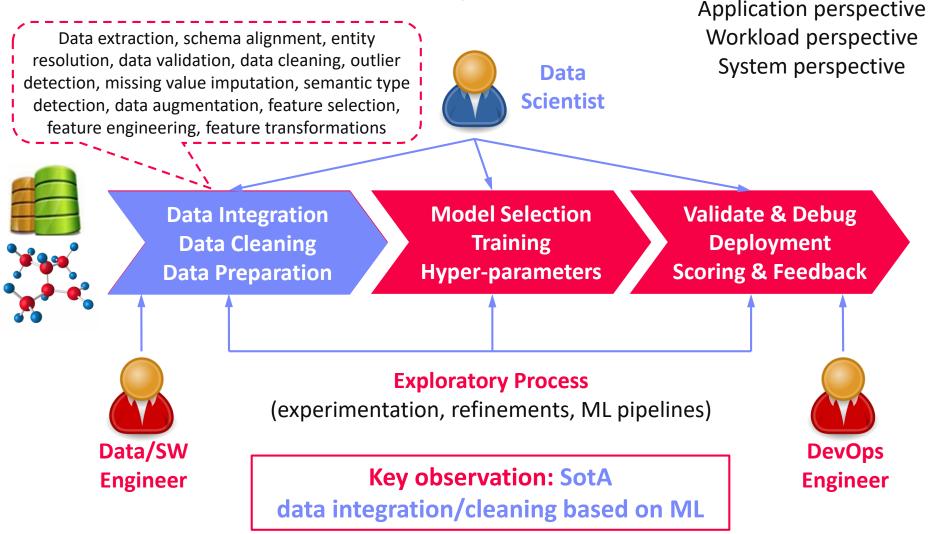
[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. **AI Magazine 17(3) (1996)**]



The Data Science Lifecycle, cont.

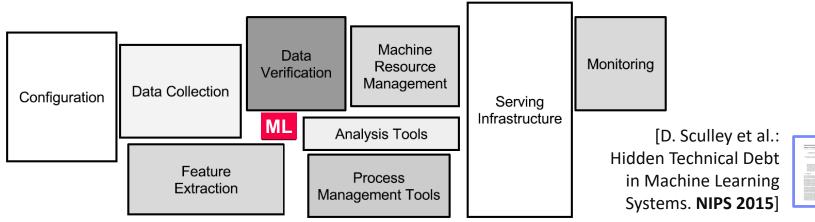
CRISP-DM

- CRoss-Industry
 Standard Process for
 Data Mining
- Additional focus on business understanding and deployment


[https://statistikdresden.de/archives/1128]

Data-centric View:

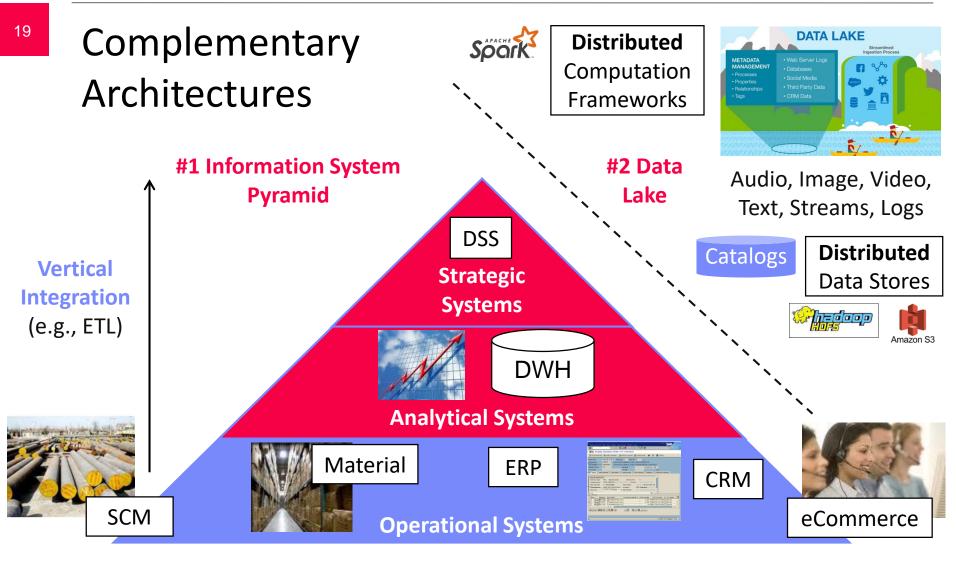
¹⁷ The Data Science Lifecycle, cont.


The 80% Argument

- Data Sourcing Effort
 - Data scientists spend 80-90% time on finding, integrating, cleaning datasets

[Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

system The Local Data and the Way Derived
BACKURAL BATTA


Technical Debts in ML Systems

- Glue code, pipeline jungles, dead code paths
- Plain-old-data types (arrays), multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

Horizontal Integration (e.g., EAI)

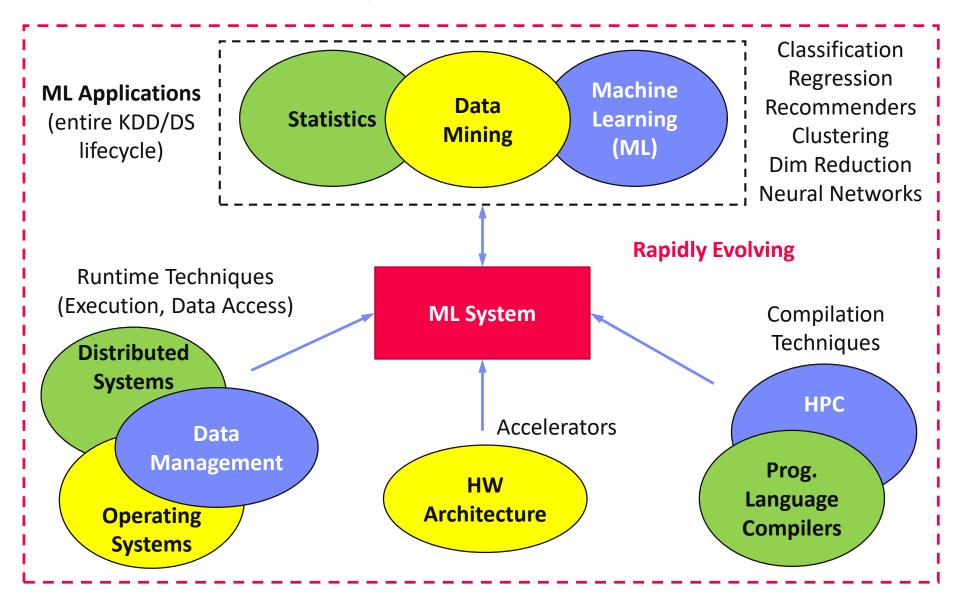
706.520 Data Integration and Large-Scale Analysis – 01 Introduction and Overview Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Course Goals

- #1 Major data integration architectures
- #2 Key techniques for data integration and cleaning
- #3 Methods for large-scale data storage and analysis

Apache SystemDS: A Declarative ML System for the End-to-End Data Science Lifecycle

Background and System Architecture https://github.com/apache/systemds



ML Systems

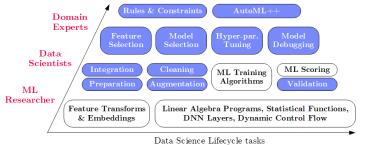
22

What is an ML System?

ML Systems

Landscape of ML Systems

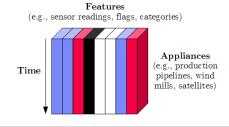
- Existing ML Systems
 - #1 Numerical computing frameworks
 - #2 ML Algorithm libraries (local, large-scale)
 - #3 Linear algebra ML systems (large-scale)
 - #4 Deep neural network (DNN) frameworks
 - #5 Model management, and deployment
- Exploratory Data-Science Lifecycle
 - Open-ended problems w/ underspecified objectives
 - Hypotheses, data integration, run analytics
 - Unknown value → lack of system infrastructure
 → Redundancy of manual efforts and computation



"Take these datasets and show value or competitive advantage"

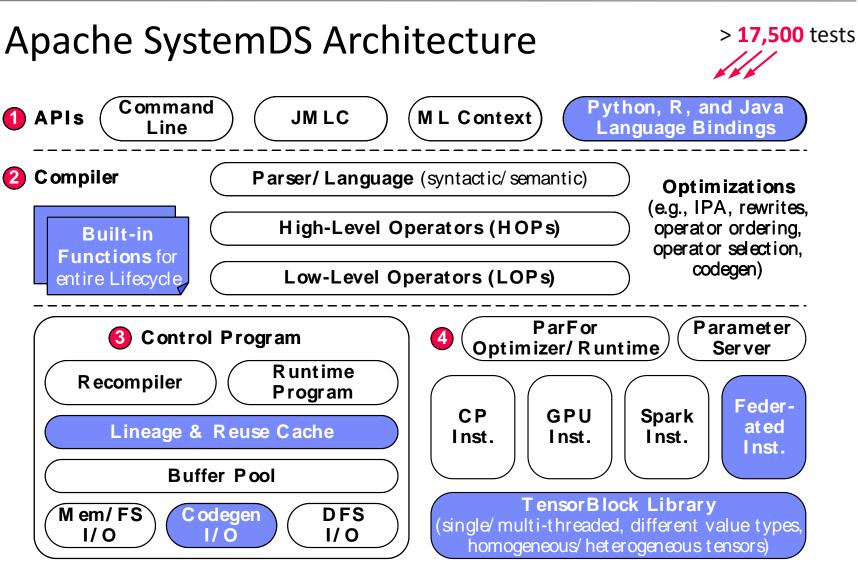
Apache SystemDS Design

- Objectives
 - Effective and efficient data preparation, ML, and model debugging at scale
 - High-level abstractions for different lifecycle tasks and users
- #1 Based on DSL for ML Training/Scoring
 - Hierarchy of abstractions for DS tasks
 - ML-based SotA, interleaved, performance



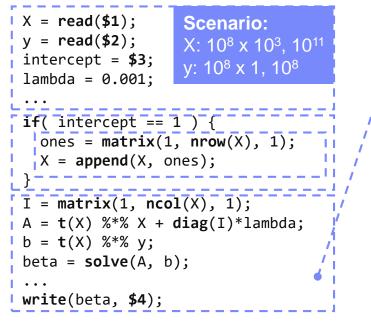
Apache SystemML (since 2010)

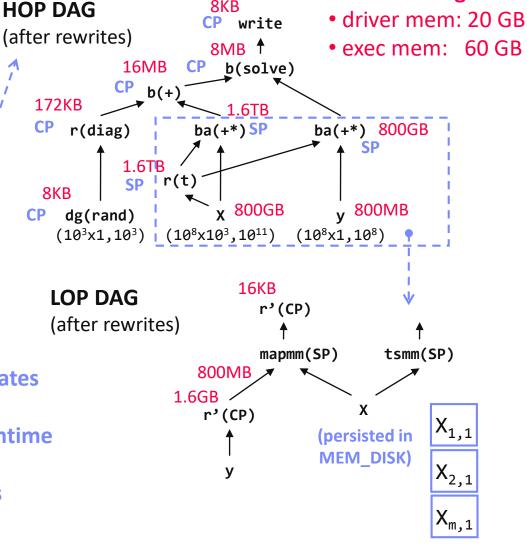
→ Apache SystemDS (07/2020)


→ SystemDS (09/2018)

- #2 Hybrid Runtime Plans and Optimizing Compiler
 - System infrastructure for diversity of algorithm classes
 - Different parallelization strategies and new architectures (Federated ML)
 - Abstractions \rightarrow redundancy \rightarrow automatic optimization
 - #3 Data Model: Heterogeneous Tensors
 - Data integration/prep requires generic data model

ISDS


[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. **CIDR 2020**]



Cluster Config:

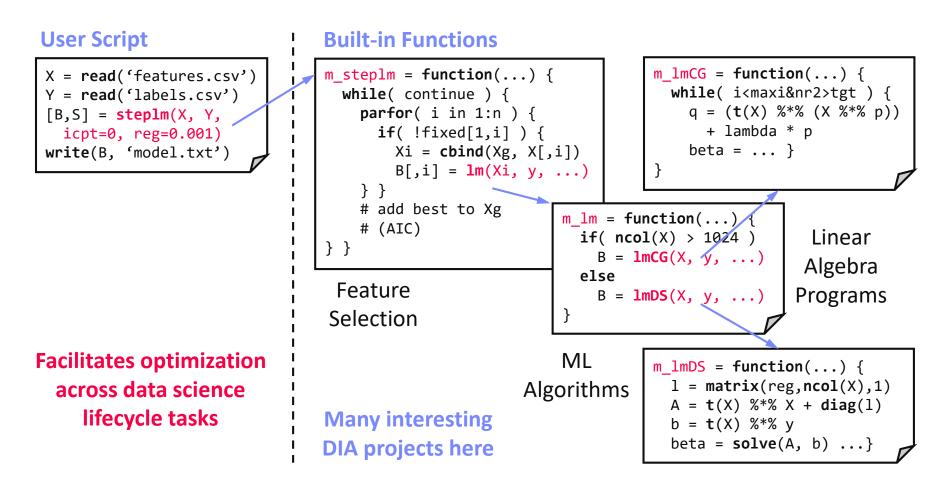
Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

8KB

Hybrid Runtime Plans:

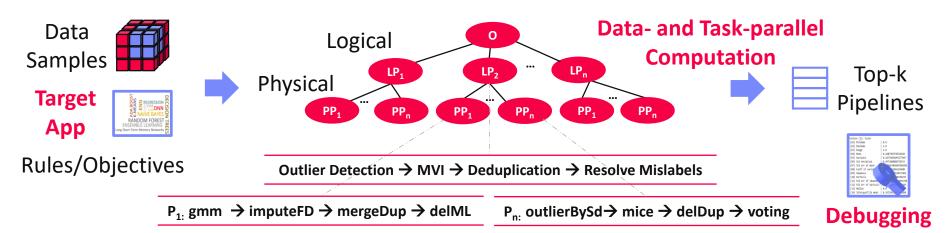
- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime


Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations

Language Abstractions and APIs, cont.

Example: Stepwise Linear Regression



Data Cleaning Pipelines

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives (physical/logical)
 - Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

Country		Universi
Austria		TU Graz
Austria		TU Graz
Germany		TU Graz
India		IIT
IIT		IIT
Pakistan		IIT
India		IIT
Pakistan		SIBA
null		SIBA
null		SIBA
	Austria Austria Germany India IIT Pakistan India Pakistan null	Austria Austria Germany India IIT Pakistan India Pakistan null

Dirty Data

After imputeFD(0.5)

Α	В	С	D
0.77	0.80	1	1
0.96	0.12	1	1
0.66	0.09	null	1
0.23	0.04	17	1
0.91	0.02	17	null
0.21	0.38	17	1
0.31	null	17	1
0.75	0.21	20	1
null	null	20	1
0.19	0.61	20	1
0.64	0.31	20	1

A	В	C	D
0.77	0.80	1	1
0.96	0.12	1	1
0.66	0.09	17	1
0.23	0.04	17	1
0.91	0.02	17	1
0.21	0.38	17	1
0.31	0.29	17	1
0.75	0.21	20	1
0.41	0.24	20	1
0.19	0.61	20	1
0.64	0.31	20	1

Dirty Data

After **MICE**

Notable DAMS Lab Research since 2019

- SystemDS [CIDR'20]
- Multi-Level Lineage Tracing & Reuse [SIGMOD'21]
- Federated Learning [SIGMOD'21]
- Model Debugging (SliceLine) [SIGMOD'21]
- DAPHNE [CIDR'22]
- Feature Transformations [VLDB'22]
- Compression Framework [SIGMOD'23]

https://damslab.github.io/

Summary and Q&A

- Course Goals
 - #1 Major data integration architectures
 - #2 Key techniques for data integration and cleaning
 - #3 Methods for large-scale data storage and analysis

Exercise/Projects

Exercise on data integration and ML pipeline

Next Lectures

- O2 Data Warehousing, ETL, and SQL/OLAP [Oct 14]
- 03 Message-oriented Middleware, EAI, and Replication [Oct 21]

