
1
SCIENCE
PASSION

TECHNOLOGY

Data Integration and Large Scale Analysis
08 Cloud Resource Management

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Nov 25, 2022

2

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

3

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Agenda

 Motivation, Terminology, and Fundamentals

 Resource Allocation, Isolation, and Monitoring

 Task Scheduling and Elasticity

4

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Motivation, Terminology, and
Fundamentals

5

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Recap: Motivation Cloud Computing, cont.

 Argument #1: Pay as you go

 No upfront cost for infrastructure

 Variable utilization  over-provisioning

 Pay per use or acquired resources

 Argument #2: Economies of Scale

 Purchasing and managing IT infrastructure at scale  lower cost
(applies to both HW resources and IT infrastructure/system experts)

 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity

 Assuming perfect scalability, work done
in constant time * resources

 Given virtually unlimited resources
allows to reduce time as necessary

Motivation, Terminology, and Fundamentals

Utili-
zation

Time

100%

100 days @ 1 node

≈
1 day @ 100 nodes

(but beware Amdahl’s law:
max speedup sp = 1/s)

6

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Overview Resource Management & Scheduling

 Resource Bundles

 Logical containers (aka nodes/instances) of different resources (vcores, mem)

 Disk capacity, disk and network bandwidth

 Accelerator devices (GPUs, FPGAs), etc

 Resource Management

Motivation, Terminology, and Fundamentals

Resource
Selection

Resource
Allocation

Resource
Isolation &
Monitoring

Task
Scheduling

4x m5.large
(2vCPU, 8GB Mem)

12/48GB 10/12 vc

2

8

Scheduling is a fundamental
computer science technique

(at many different levels)

7

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Recap: Apache Spark History and Architecture

 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)

 Different file systems/
formats, and data sources:
HDFS, S3, DBs, NoSQL

 Different cluster managers:
Standalone, Mesos,
Yarn, Kubernetes

 Separation of concerns:
resource allocation vs task scheduling

Motivation, Terminology, and Fundamentals

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/

8

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Scheduling Problems

 Bag-of-Tasks Scheduling

 Job of independent (embarrassingly parallel) tasks

 Examples: EC2 instances, map tasks

 Gang Scheduling

 Job of frequently communicating parallel tasks

 Examples: MPI programs, parameter servers

 DAG Scheduling

 Job of tasks with precedence constraints
(e.g., data dependencies)

 Examples: Op scheduling Spark, TensorFlow, SystemDS

 Real-Time Scheduling

 Job or task with associated deadline (soft/hard)

 Examples: rendering, car control

Motivation, Terminology, and Fundamentals

Bs

A

[Eleni D. Karatza: Cloud Performance
Resource Allocation and Scheduling Issue,
Aristotle University of Thessaloniki 2018]

9

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Basic Scheduling Metrics and Algorithms

 Common Metrics

 Mean time to completion (total runtime for job), and
max-stretch (completion/work – relative slowdown)

 Mean response time (job waiting time for resources)

 Throughput (jobs per time unit)

 #1 FIFO (first-in, first-out)

 Simple queueing and processing in order

 Problem: Single long-running job can stall many short jobs

 #2 SJF (shortest job first)

 Sort jobs by expected runtime and execute in order ascending

 Problem: Starvation of long-running jobs

 #3 Round-Robin (FAIR)

 Allocate similar time (tasks, time slices) to all jobs

Motivation, Terminology, and Fundamentals

10

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and
Monitoring

11

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Selection

 #1 Manual Selection

 Rule of thumb (I/O, mem, CPU characteristics of app)

 Data characteristics, and framework configurations, experience

 Example Spark Submit

Resource Allocation, Isolation, and Monitoring

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server –Xms40g –Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args …

12

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Selection, cont.

 #2 Application-Agnostic, Reactive

 Dynamic allocation based on workload characteristics

 Examples: Spark dynamic allocation, Databricks AutoScaling

 #3 Application-Aware, Proactive

 Estimate time/costs of job under
different configurations (what-if)

 Min $costs under time constraint

 Min runtime under $cost constraint

Resource Allocation, Isolation, and Monitoring

(fixed MR job w/ 6 nodes)

[Herodotos Herodotou, Fei Dong,
Shivnath Babu: No one (cluster) size
fits all: automatic cluster sizing for
data-intensive analytics. SoCC 2011]

13

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Negotiation and Allocation

 Problem Formulation

 N nodes with memory and CPU constraints

 Stream of jobs with memory and CPU requirements

 Assign jobs to nodes (or to minimal number of nodes)

 Knapsack problem (bin packing problem)

 In Practice: Heuristics

 Major concern: scheduling efficiency (online, cluster bottleneck)

 Approach: Sample queues, best/next-fit selection

 Multiple metrics: dominant resource calculator

Resource Allocation, Isolation, and Monitoring

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

“Tetris Analogy”
(w/ expiration and

queues)

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/

14

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Slurm Workload Manager

 Slurm Overview

 Simple Linux Utility for Resource Management (SLURM)

 Heavily used in HPC clusters (e.g., MPI gang scheduling)

 Scheduler Design

 Allocation/placement of requested resources

 Considers nodes, sockets, cores, HW threads,
memory, GPUs, file systems, SW licenses

 Job submit options: sbatch (async job script), salloc (interactive),
srun (sync job submission and scheduling)

 Configuration: cluster, node count (ranges), task count, mem, etc

 Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core
mem, mem-per-cpu, mincpus, tmp min-disk-space

 Elasticity via re-queueing

Resource Allocation, Isolation, and Monitoring

[Don Lipari: The SLURM
Scheduler Design, User
Group Meeting, 2012]

15

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Background: Hadoop JobTracker (anno 2012)

 Overview

 Hadoop cluster w/ fixed configuration of n map slots, m reduce slots
(fixed number and fixed memory config map/reduce tasks)

 JobTracker schedules map and reduce tasks to slots

 FIFO and FAIR schedulers, account for data locality

 Data Locality

 Levels: data local, rack local, different rack

 Delay scheduling (with FAIR scheduler)
wait 1-3s for data local slot

 Problem

 Intermixes resource allocation and task scheduling
 Scalability problems in large clusters

 Forces every application into MapReduce programming model

Resource Allocation, Isolation, and Monitoring

[Matei Zaharia et al: Delay
scheduling: a simple technique for

achieving locality and fairness in
cluster scheduling. EuroSys 2010]

16

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Mesos Resource Management

 Overview Mesos

 Fine-grained, multi-framework cluster sharing

 Scalable and efficient scheduling  delegated to frameworks

 Resource offers

Resource Allocation, Isolation, and Monitoring

[Benjamin Hindman et al:
Mesos: A Platform for Fine-

Grained Resource Sharing in
the Data Center. NSDI 2011]

17

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Mesos Resource Management, cont.

 Resource Offers

 Mesos master decides how many resources to offer

 Framework scheduler decides which offered resources to accept/reject

 Challenge: long waiting times, lots of offers  filter specification

Resource Allocation, Isolation, and Monitoring

Reported
available
resources

Offered
resources

Mesosphere
Marathon:
container

orchestration
(e.g., Docker)

18

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

YARN Resource Management

 Overview YARN

 Hadoop 2 decoupled resource scheduler (negotiator)

 Independent of programming model, multi-framework cluster sharing

 Resource Requests

Resource Allocation, Isolation, and Monitoring

Task Scheduling via
Application Masters

(AMs)

Resource
Isolation via

Node Managers

Resource
Scheduling via

Resource Manager

[Vinod Kumar Vavilapalli et al:
Apache Hadoop YARN: yet another

resource negotiator. SoCC 2013]

19

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

YARN Resource Management, cont.

 Capacity Scheduler

 Hierarchy of queues w/ shared resource among sub queues

 Soft (and optional hard) [min, max] constraints of max resources

 Default queue-user mapping

 No preemption during runtime
(only redistribution over queues)

 Fair Scheduler

 All applications get same resources over time

 Fairness decisions on memory requirements,
but dominant resource fairness possible too

Resource Allocation, Isolation, and Monitoring

root

data science

indexing

20

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Kubernetes Container Orchestration

 Overview Kubernetes

 Open-source system for automating, deployment, and
management of containerized applications

 Container: resource isolation and application image

 System Architecture

 Pod: 1 or more containers
w/ individual IP

 Kubelet: node manager

 Controller: app master

 API Server + Scheduler

 Namespaces, quotas,
access control, auth.,
logging & monitoring

 Wide variety of applications

Task Scheduling and Elasticity

 from machine- to
application-oriented

scheduling

[https://kubernetes.io/docs/concepts/
overview/components/]

KV Store

https://kubernetes.io/docs/concepts/overview/components/

21

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Kubernetes Container Orchestration, cont.

 Pod Scheduling (Placement)

 Default scheduler: kube-scheduler, custom schedulers possible

 #1 Filtering: finding feasible nodes for pod
(resources, free ports, node selector, requested volumes, mem/disk pressure)

 #2 Scoring: score feasible nodes  select highest score
(spread priority, inter-pod affinity, requested priority, image locality)

 Tuning: # scored nodes: max(50, percentageOfNodesToScore [1,100])

(sample taken round robin across zones)

 Binding: scheduler notifies API server

Task Scheduling and Elasticity

22

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Isolation

 Overview Key Primitives

 Platform-dependent resource isolation primitives  container runtime

 Linux namespaces: restricting visibility

 Linux cgroups: restricting usage

 Cgroups (Control Groups)

 Developed by Google engineers  Kernel 2.6.24 (2008)

 Resource metering and limiting
(memory, CPU, block I/O, network)

 Each subsystem has a hierarchy (tree)
with each node = group of processes

 Soft and hard limits on groups

 Mem hard limit  triggers OOM killer (physical, kernel, total)

 CPU set weights (time slices)/no limits, cpuset to pin groups to CPUs

Resource Allocation, Isolation, and Monitoring

Linux Containers
(e.g., basis of Docker)

[Jérôme Petazzoni: Cgroups, name-
spaces and beyond: What are containers

made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-
N34im8&feature=youtu.be]

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be

23

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity

24

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling Overview

 Problem Formulation

 Given computation job and set of resources (servers, threads)

 Distribute job in pieces across resources

 #1 Job-Task Partitioning

 Split job into sequence of N tasks

 #2 Task Placement / Execution

 Assign tasks to K resources for execution

 Goal: Min Job Completion Time

 Beware: Max runtime per resource
determines job completion time

Task Scheduling and Elasticity

Node 1 Node 2

t1 t2 t3 t4 t5 t6

Computation Job

t1 t2 t3 t5

t4 t6

Node 1:

Node 2:

Job
done

25

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling – Partitioning

 Static Partitioning

 M = K tasks, task size ceil(N/K)

 Low overhead, poor load balance

 Fixed Partitioning

 M = N/d tasks, task size d

 E.g., # iterations, # tuples to process

 Self-Scheduling

 Exponentially decreasing task sizes d
M = log N tasks (w/ min task size)

 Low overhead and good load balance at end

 Guided self scheduling

 Factoring: waves of task w/ equal size

Task Scheduling and Elasticity

Example Hyper-param Tuning
parfor(i in 1:800)
R[i,] = lm(X,y,reg[i])

400

400

100 100 100100

100 100

100

100

200

100200

100 50

50

50

50

[Susan Flynn Hummel, Edith Schonberg,
Lawrence E. Flynn: Factoring: a

practical and robust method for
scheduling parallel loops. SC 1991]

26

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling – Placement

 Task Queues

 Sequence of tasks in FIFO queue

 #1 Single Task Queue
(self-balancing, but contention)

 #2 Per-Worker Task Queue
(work separation, and preparation)

 Work Stealing

 On empty worker queue, probe other queues and “steal” tasks

 More common in multi-threading, difficult in distributed systems

 Excursus: Power of 2 Choices

 Choose d bins at random, task in least full bin

 Reduce max load from
log 𝑀

log log 𝑀
to

log log 𝑀

log𝑀

Task Scheduling and Elasticity

Node
1

Node
2

“Airport”

Node
1

Node
2

“Super Market”

[Michael D. Mitzenmacher:
The Power of Two Choices in
Randomized Load Balancing,

PhD Thesis UC Berkeley 1996]

27

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Spark Task Scheduling

 Overview

 Schedule job DAGs in stages (shuffle barriers)

 Default task scheduler: FIFO; alternative: FAIR

Task Scheduling and Elasticity

SystemDS Example (80GB):
X = rand(rows=1e7,cols=1e3)
parfor(i in 1:4)

for(j in 1:10000)
print(sum(X)) #spark job

FAIR

FIFO

28

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Spark Task Scheduling, cont.

 FAIR scheduling
w/ k=32
concurrent jobs
and 200GB

Task Scheduling and Elasticity

FAIR:
Share 320 cores

among 32
concurrent jobs
 ~10 tasks/job

Elapsed:
~40min

29

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Spark Task Scheduling, cont.

 Fair Scheduler
Configuration

 Pools with shares of cluster

 Scheduling modes: FAIR, FIFO

 weight: relative to equal share

 minShare: min numCores

 Spark on Kubernetes

 Run Spark in shared cluster
with Docker container apps,
Distributed TensorFlow, etc

 Custom controller, and
shuffle service (dynAlloc)

Task Scheduling and Elasticity

<allocations>
<pool name=“data_science">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>6</minShare>

</pool>
<pool name=“indexing">
<schedulingMode>FIFO</schedulingMode>
<weight>2</weight>
<minShare>8</minShare>

</pool>
</allocations>

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-api>:<k8s-api-port> \
--deploy-mode cluster
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
--conf spark.kubernetes.container.image=<sparkimg> \
SystemDS.jar -f test.dml -stats -explain -args …

30

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Spark Dynamic Allocation

 Configuration for YARN/Mesos

 Set spark.dynamicAllocation.enabled = true

 Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

 Executor Addition/Removal

 Approach: look at task pressure (pending tasks / idle executors)

 Increase exponentially (add 1, 2, 4, 8) if
pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

 Decrease executors they are idle for
spark.dynamicAllocation.executorIdleTimeout

Task Scheduling and Elasticity

[https://spark.apache.org/docs/
latest/job-scheduling.html]

https://spark.apache.org/docs/latest/job-scheduling.html

31

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Elasticity in SystemML

 Basic Ideas
 Optimize ML program resource configurations via online what-if analysis

 Generating and costing runtime plans for local/MR

 Program-aware grid enumeration, pruning, and re-optimization techniques

Task Scheduling and Elasticity

[Botong Huang et al.:
Resource Elasticity for

Large-Scale Machine
Learning. SIGMOD 2015]

Min runtime w/o
unnecessary

over-allocation

32

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Summary and Q&A

 Motivation, Terminology, and Fundamentals

 Resource Allocation, Isolation, and Monitoring

 Task Scheduling and Elasticity

 Next Lectures

 10 Distributed Data Storage [Dec 02]

