SCIENCE
PASSION
TECHNOLOGY

Data Integration and Large Scale Analysis
08 Cloud Resource Management

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Nov 25, 2022 “ISDS

Ty

Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing Learning Systems

11 Distributed Data-Parallel Computation
Compute/
Storage
10 Distributed Data Storage
09 Cloud Resource Management and Scheduling
Infra
08 Cloud Computing Fundamentals

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Ty

Agenda

= Motivation, Terminology, and Fundamentals
= Resource Allocation, Isolation, and Monitoring
= Task Scheduling and Elasticity

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Ty

Motivation, Terminology, and
Fundamentals

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Motivation, Terminology, and Fundamentals ﬁ-IG-rlan-

Recap: Motivation Cloud Computing, cont.

A
= Argument #1: Pay as you go 100% f------morommmmmmmm oo
= No upfront cost for infrastructure Util
= Variable utilization =» over-provisioning ,_tion
= Pay per use or acquired resources
Time
= Argument #2: Economies of Scale
= Purchasing and managing IT infrastructure at scale =» lower cost
(applies to both HW resources and IT infrastructure/system experts)
= Focus on scale-out on commodity HW over scale-up =» lower cost
= Argument #3: Elasticity 100 days @ 1 node
= Assuming perfect scalability, work done =
in constant time * resources 1 day @ 100 nodes
= Given virtually unl‘lmlted resources (but beware Amdahl’s law:
allows to reduce time as necessary max speedup sp = 1/s)
706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling n S S
Shafaq Siddiqi, Graz University of Technology, WS 2022/23 I D

Motivation, Terminology, and Fundamentals

Ty

Overview Resource Management & Scheduling

= Resource Bundles

= |ogical containers (aka nodes/instances) of different resources (vcores, mem)
= Disk capacity, disk and network bandwidth

= Accelerator devices (GPUs, FPGASs), etc

= Resource Management

Resource

Selection

4x m5.large 12/48GB 10/12 vc

Resource
Allocation

(2vCPU, 8GB Mem) -

Scheduling is a fundamental
computer science technique
(at many different levels)

Resource
Isolation &
Monitoring

B Yﬂ

n

Task

Scheduling

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23 u

Motivation, Terminology, and Fundamentals ﬂ-grlan.

Recap: Apache Spark History and Architecture

= High-Level Architecture

= Different language bindings:

Scala, Java, Python, R

= Different libraries:

SQL, ML, Stream, Graph
= Spark core (incl RDDs)
= Different file systems/

formats, and data sources:
HDFS, S3, DBs, NoSQL

= Different cluster managers:
Standalone, Mesos,
Yarn, Kubernetes

=» Separation of concerns:

[https://spark.apache.org/]

MLlIlib

learning)

Apache Spark

E%H%%“%%%%‘%HHIE’ h/IEzs;C)ES \{/\F{Pq |HIHIHHHH“H%H%%%%

APACHE

SpQrK CrhErEbEEw

SR -
5% MEsos £ kubernetes

resource allocation vs task scheduling

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

https://spark.apache.org/

Motivation, Terminology, and Fundamentals ﬂ-IG-rlan-

n SChEd U I | ng PrObIemS [Eleni D. Karatza: Cloud Performance

Resource Allocation and Scheduling Issue,
Aristotle University of Thessaloniki 2018] =

= Bag-of-Tasks Scheduling
= Job of independent (embarrassingly parallel) tasks
= Examples: EC2 instances, map tasks

= Gang Scheduling
= Job of frequently communicating parallel tasks
= Examples: MPI programs, parameter servers

= DAG Scheduling C=A+s*B
= Job of tasks with precedence constraints D = (C 2)"(C-1)
(e.g., data dependencies) E = exp(C-1)

= Examples: Op scheduling Spark, TensorFlow, SystemDS

= Real-Time Scheduling
= Job or task with associated deadline (soft/hard)

| | | >

= Examples: rendering, car control

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Motivation, Terminology, and Fundamentals

Ty

Basic Scheduling Metrics and Algorithms

Common Metrics

= (total runtime for job), and
max-stretch (completion/work — relative slowdown)

= (job waiting time for resources)

= (jobs per time unit)

#1 FIFO (first-in, first-out)
= Simple queueing and processing in order
= Problem: Single long-running job can stall many short jobs

#2 SJF (shortest job first)

= Sort jobs by expected runtime and execute in order ascending
= Problem: Starvation of long-running jobs

#3 Round-Robin (FAIR)
= Allocate similar time (tasks, time slices) to all jobs

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Ty

Resource Allocation, Isolation, and
Monitoring

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring ﬂ-grla'!.

Resource Selection

= #1 Manual Selection
= Rule of thumb (I/O, mem, CPU characteristics of app)
= Data characteristics, and framework configurations, experience

= Example Spark Submit

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK _HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args ..

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring ﬂ-l(;rla'!l

Resource Selection, cont.

= #2 Application-Agnostic, Reactive
= Dynamic allocation based on workload characteristics
= Examples: Spark dynamic allocation, Databricks AutoScaling

= #3 Application-Aware, Proactive 1200 W Actual = Predicted
= Estimate time/costs of job under g 1,000 -
different configurations (what-if) £ zgg |
= Min Scosts under time constraint E” 400 1
= Min runtime under Scost constraint g 208 7 1 . . -

ml.small ml.large ml.xlarge cl.medium cl.xlarge

W Actual Predicted
10.00

[Herodotos Herodotou, Fei Dong, 2.00

Shivnath Babu: No one (cluster) size

: : . 6.00

fits all: automatic cluster sizing for

data-intensive analytics. SoCC 2011] 4.00 o
2.00 —

(fixed MR job w/ 6 nodes) 0.00 | | | I | I |

ml.small mil.large mil.xlarge c1.medium cl.xlarge

Instance Type

Cost (S)

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Ty

Resource Allocation, Isolation, and Monitoring

Resource Negotiation and Allocation

= Problem Formulation

“Tetris Analogy”
(w/ expiration and
queues)

= N nodes with memory and CPU constraints
= Stream of jobs with memory and CPU requirements . l iﬂ
= Assign jobs to nodes (or to minimal number of nodes) | LE

=» Knapsack problem (bin packing problem)

= In Practice: Heuristics
= Major concern: scheduling efficiency (online, cluster bottleneck)

= Approach: Sample queues, best/next-fit selection 12/48GB
= Multiple metrics: dominant resource calculator

6/8GB §1/32GBY 2/8GB e 1
6
8GB

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/

Resource Allocation, Isolation, and Monitoring ﬂ-grls!.

Slurm Workload Manager

= Slurm Overview
= Simple Linux Utility for Resource Management (SLURM) slurm

workload manager

= Heavily used in (e.g., MPI gang scheduling)

= Scheduler Design [Don Lipari: The SLURM

= Allocation/placement of requested resources Scheduler Design, User s
Group Meeting, 2012] o

= Considers nodes, sockets, cores, HW threads,
memory, GPUs, file systems, SW licenses

= Job submit options: sbatch (async job script), salloc (interactive),
srun (sync job submission and scheduling)

= Configuration: cluster, node count (ranges), task count, mem, etc

= Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core
mem, mem-per-cpu, mincpus, tmp min-disk-space
= Elasticity via re-queueing

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring ﬂ-grls!.

Background: Hadoop JobTracker (anno 2012)

= Overview

= Hadoop cluster w/ fixed configuration of n map slots, m reduce slots
(fixed number and fixed memory config map/reduce tasks)

= JobTracker schedules map and reduce tasks to slots
= FIFO and FAIR schedulers, account for data locality

= Data Locality

= |evels: data local, rack local, different rack [Matei Zaharia et al: Delay

= (with FAIR scheduler) scheduling: a simple technique for

wait 1-3s for data local slot achieving locality and fairness in
cluster scheduling. EuroSys 2010]

= Problem

= |ntermixes resource allocation and task scheduling
—> Scalability problems in large clusters

= Forces every application into MapReduce programming model

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring

Ty

Mesos Resource Management

= Overview Mesos

[Benjamin Hindman et al:
Mesos: A Platform for Fine-
Grained Resource Sharingin
the Data Center. NSDI 2011]

. . <4
= Fine-grained, <>
. . . <D
= Scalable and efficient scheduling 2> R
= Resource offers
Hadoop MPI ZooKeeper
scheduler scheduler quorum
R S r___:‘A ______
Mesos t Standby . ' Standby |
master ,___Mmaster I | _master |
A
/ " \
Mesos slave| | Mesos slave Mesos slave
Hadoop MPI Hadoop|| MPI
executor executor executor||executor
task | task | task task
706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring ﬁ-!rla'!l

Mesos Resource Management, cont.

= Resource Offers
= Mesos master decides how many resources to offer
= Framework scheduler decides which offered resources to accept/reject
= Challenge: long waiting times, lots of offers > filter specification

Framework 1 Framework 2
Offered Job1 | Job2 Job1 | Job2
FW Scheduler FW Scheduler

resources

<task1, s1, 2cpu, 1gb, ... >]

[<s1, 4cpuy, 4gb, ... > (2 <task2, s1, 1cpu, 2gb, ... >

—
Allocation Mesos
module master
Reported 7 ~ Mesosphere
available (=1 2eou 206 > <fw1, task1, 2cpu, 1gb, ... > i
(st 4opu. 4gb. .. > (1 <fw1, task2, 1cpu, 2gb, ... > Marathon:
resources container
Slave 1 Slave 2 .
L Eecttor . orchestration
1 ___)_(e_cll_JtPL___ | Executor
! Task ! Task ;! Task_|[Task (e.g., Docker)
706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring

Ty

YARN Resource Management

= Overview YARN

= Hadoop 2 decoupled resource scheduler (negotiator)

[Vinod Kumar Vavilapalli et al:
Apache Hadoop YARN: yet another
resource negotiator. SoCC 2013]

= |Independent of programming model, multi-framework cluster sharing
= Resource Requests

Task Scheduling via

Application Masters

(AMs)

Resource
Isolation via
Node Managers

ResourceManager
RM -- NodeManager
client > = ~
% Client - RM [Scheduler J < \\
client > : R r
[AMService ’ eso‘? ce)
L : Scheduling via
A
Resource Manager
RM -- AM
| ,,
MP *[M] L Umbilical g Container
AM Container [« AM =LI Container
Node Manager [Node Manager . [Node Manager
L t)

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Resource Allocation, Isolation, and Monitoring ﬂ-grls!.

YARN Resource Management, cont.

= Capacity Scheduler

w/ shared resource among sub queues

= Soft (and optional hard) [min, max] constraints of max resources

= Default queue-user mapping data science

= No preemption during runtime —> II_>
(only redistribution over queues) root
— |}
indexin
. [
= Fair Scheduler

= All applications get same resources over time

= Fairness decisions on memory requirements,
but dominant resource fairness possible too

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity ﬁ-IG-rlan-

Kubernetes Container Orchestration %

= QOverview Kubernetes

= Open-source system for automating, deployment, and
management of containerized applications

=» from machine- to
application-oriented

. : : T scheduling
= Container: resource isolation and application image

= System Architecture

= Pod: 1 or more containers . - j
w/ individual IP MM ?

= Kubelet: node manager

kube-apiserver

= Controller: app master

= API Server + Scheduler

= Namespaces, quotas, 'KV Store I_ L @ E} E
access Control’ auth.' ! 1 Kubernetes Nodes

logging & monitoring [https://kubernetes.io/docs/concepts/
overview/components/]

= Wide variety of applications

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

https://kubernetes.io/docs/concepts/overview/components/

Task Scheduling and Elasticity ﬂ-grls!.

Kubernetes Container Orchestration, cont.

= Pod Scheduling (Placement)
= Default scheduler: kube-scheduler, custom schedulers possible

= finding feasible nodes for pod
(resources, free ports, node selector, requested volumes, mem/disk pressure)

= score feasible nodes = select highest score
(spread priority, inter-pod affinity, requested priority, image locality)

= Tuning: # scored nodes: max(50, percentageOfNodesToScore [1,100])
(sample taken round robin across zones)

-> scheduler notifies APl server
706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Resource Allocation, Isolation, and Monitoring ﬂ-grls!.

Resource Isolation

= QOverview Key Primitives

Platform-dependent resource isolation primitives = container runtime
Linux namespaces: restricting visibility Linux Containers
Linux cgroups: restricting usage (e.g., basis of Docker)

= Cgroups (Control Groups)

Developed by Google engineers = Kernel 2.6.24 (2008)

[Jérébme Petazzoni: Cgroups, name- -

Coroups, sarmespaces and beyond:

(memory’ CPU, block I/O, network) spaces and beyond: What are containers | =«
made from? DockerConEU 2015.] —

Each subsystem has a hierarchy (tree)

. [https://www.youtube.com/watch?v=sK5i-
with each node = group of processes

N34im8&feature=youtu.be]

Soft and hard limits on groups
Mem hard limit = triggers OOM killer (physical, kernel, total)
CPU - set weights (time slices)/no limits, cpuset to pin groups to CPUs

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be

Ty

Task Scheduling and Elasticity

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Task Scheduling and Elasticity ﬁ-lc;lan.

Task Scheduling Overview

= Problem Formulation

= Given computation job and set of resources (servers, threads)
= Distribute job in pieces across resources

Computation Job

= #1 Job-Task Partitioning

= Split job into sequence of N tasks

= #2 Task Placement / Execution
= Assign tasks to K resources for execution

= Goal: Min Job Completion Time Node 1 :
ode 1:

= Beware: Max runtime per resource 0 A |

|

|

determines job completion time Node 2:

-

Job
done

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity

Ty

Task Scheduling — Partitioning

= Static Partitioning
= M = K tasks, task size ceil(N/K)
= Low overhead, poor load balance

= Fixed Partitioning
= M = N/d tasks, task size d
= E.g., #iterations, # tuples to process

= Self-Scheduling

= Exponentially decreasing task sizes d
- M = log N tasks (w/ min task size)

= Low overhead and good load balance at end

= Guided self scheduling [Susan Flynn Hummel, Edith Schonberg,

= Factoring: waves of task w/ equal size

Example Hyper-param Tuning
parfor(i in 1:800)
R[1,] = Im(X,y,reg[1i])
400
400

Lawrence E. Flynn: Factoring: a
practical and robust method for
scheduling parallel loops. SC 1991]

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity ﬁ-IG-rlan-

Task Scheduling — Placement

= Task Queues

= Sequence of tasks in FIFO queue
= #1 Single Task Queue
(self-balancing, but contention) Node @ Node

= #2 Per-Worker Task Queue 1 2
(work separation, and preparation)

T -
B S

“Airport” “Super Market”

= Work Stealing

= On empty worker queue, probe other queues and “steal” tasks
= More common in multi-threading, difficult in distributed systems

= Excursus: Power of 2 Choices

= Choose d bins at random, task in least full bin

[Michael D. Mitzenmacher:
The Power of Two Choices in
log M loglog M Randomized Load Balancing,
loglog M log M PhD Thesis UC Berkeley 1996]

= Reduce max load from

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity

Ty

27

FIFO

FAIR

Spark Task Scheduling

= Overview

SAPACHE&

oark

= Schedule job DAGs in stages (shuffle barriers)
= Default task scheduler: FIFO; alternative: FAIR

Stage Id ~
37
36
35
34

Fair Scheduler Pools (5)

Pool Name
default

parforPool2
parforPool1
parforPool3
parforPool0

Description

fold at RDDAggregateUtils.java:150

fold at RDDAggregateUtils_java:150

fold at RDDAggregateUtils.java:150

fold at RDDAggregateUtils.java: 150

Active Stages (4)

Stageld ~
206
205
204
203

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling

Pool Name
parforPool0
parforPool2
parforPool1
parforPool3

Minimum Share

o o o o

Description

fold at RDDAggregateUtils.java: 150
fold at RDDAggregateUtils.java: 150
fold at RDDAggregateUtils.java: 150
fold at RDDAggregateUtils.java: 150

+details
+details
+details

+details

Pool Weight

1
1
1

+details
+details
+details

+details

Submitted

2019/12/12 23:48:07
2019/12/12 23:48:06
2019/12/12 23:48:05
2019/12/12 23:48:05

Duration
Unknown
0.7s

1s

2s

Active Stages

0

1

1

1

1

Submitted
(kill) 2019/12/12 23:14:20
(kill) 2019/12/12 23:14:20
(kill) 2019/12/12 23:14:19
(kill) 2019/12/12 23:14:19

Duration
10s

1s

2s

2s

SystemDS Example (80GB):

X =

rand(rows=1e7,cols=1e3)

parfor(i in 1:4)
for(j in 1:10000)
print(sum(X)) #spark job

Tasks: Succeeded/Total
0/596
391/596 (23 running)
424/596 (20 running)

504/596 (20 running)

Running Tasks
0

38

16

3

43

Tasks: Succeeded/Total
368/596 (67 running)
432/596 (43 running)
561/596 (11 running)

590/596 (6 running)

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Input Output Shuffle Rea
48.9 GB
53.0GB
63.0 GB
SchedulingMode
FIFO
FIFO
FIFO
FIFO
FIFO
Input Output Shuffle Rea:
46.0 GB
54.0 GB
70.1 GB
73.7 GB

“ISDS

Task Scheduling and Elasticity

Grazm
.
Spark Task Scheduling, cont.
~ Active Stages (32)
. Stage ld ~ Pool Name Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle Write
. FAI R Sc h e d u I I n g 663 parforPool7 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:58 03s | 48/1490 (25 running) 6.0 GB
662 parforPool9 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:57 07s L 186/1490 (25 running) 233GB
W/ k= 3 2 661 parforPool 10 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:57 07s L 221/1490 (24 running) 276 GB
660 parforPool 11 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:57 08s . 827/1490 (25 running) 409GB
(] 659 parforPool21 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:57 2s 506/1490 (9 running) 63.3GB
co n c u r re nt J o b s 658 parforPool6 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:56 2s 518/1490 (9 running) 64.8 GB
657 parforPool 1 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:56 2s 572/1490 (10 running) 71.5GB
a n d 2 OOG B 656 parforPool24 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:56 3s 603/1490 (9 running) 75.4 GB
655 parforPool 13 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:55 3s 684/1490 (10 running) 85.5GB
654 parforPool20 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:54 4s 736/1490 (10 running) 92.0GB
653 parforPool4 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:54 4s 750/1490 (9 running) 93.8 GB
652 parforPool23 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:54 5s 797/1490 (7 running) 99.6 GB
651 parforPool 15 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:53 5s 847/1490 (9 running) 105.9 GB
650 parforPool29 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:53 5s 808/1490 (2 running) 101.0GB
FA I R : 649 parforPool2 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:52 6s 926/1490 (9 running) 115.8 GB
648 parforPool26 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:52 6s 917/1490 (2 nunning) 114.6 GB
S h a re 3 2 O CO re S 647 parforPool31 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:52 6s 913/1490 (9 running) 114.1 GB
646 parforPool 19 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:51 7s 1023/1490 (8 running) 1279 GB
645 parforPool5 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:51 s 1011/1490 (7 running) 126.4 GB
a m O n g 3 2 644 parforPool 30 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:50 8s 1036/1420 (2 running) 1295 GB
. 643 parforPool3 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:49 9s 1056/1490 (8 running) 132.0 GB
CO n C u r re n t J O b S 642 parforPool17 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:49 9s 1125/1490 (2 running) 1406 GB
641 parforPool 16 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:49 9s 1158/1490 (8 running) 144.7 GB
9 [ad 1 0 t a S ks / j O b 640 parforPool18 fold at RDDAggregateUtils.java:148 sdefails (ki) 2021/11/27 15:51:48 9s 1124/1480 (9 running) 140.5 GB
639 parforPool0 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:48 10s 1287/1490 (8 running) 160.9 GB
638 parforPool28 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:48 10s 1251/1490 (9 running) 156.4 GB
637 parforPool 12 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:48 1s 1341/1490 (8 running) 167.6 GB
636 parforPool27 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:47 12s 1309/1490 (9 running) 163.6 GB
635 parforPool8 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:47 12s 1299/1490 (8 running) 162.4 GB
634 parforPool14 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:46 12s 1413/1490 (9 running) 176.6 GB
633 parforPool25 fold at RDDAggregateUtils java:148 +details (kill) 2021/11/27 15:51:46 12s 1343/1490 (8 running) 167.9 GB
632 parforPool22 fold at RDDAggregateUtils java: 148 +details (kill) 2021/11/27 15:51:46 12s 1415/1490 (7 running) 176.9 GB
RDD Storage Disk Active Failed Complete Total Task Time (GC hhufﬂe Shuffle
4 Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input ead Write Blacklisted

E I a pse d : Active(11) 1490 200GB/595.3GB 0.0B 320 329 0 8714054 8714383 218.4 h (57 min) 1.2PB J0.0B 00B 0

~ . Dead(0) O 00B/0.0B 00B 0 0 0 0 0 0ms (0 ms) 00B 0B 0.0B 0

40 m I n Total(11) 1480 200GB/595.3GB 0.0B 320 329 0 8714054 8714383 218.4 h (57 min) 1.2PB J0.0B 00B 0

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

Task Scheduling and Elasticity ﬂ-grls!.

Spark Task Scheduling, cont.

<allocations>
<pool name=“

= Fair Scheduler

>

Configuration <schedulingMoqe>FAIR</schedulingMode>
<weight>1</weight>
= Pools with shares of cluster <minShare>6</minShare>
. </pool>
= Scheduling modes: FAIR, FIFO <pool name=“ ">
. . . . <schedulingMode>FIFO</schedulingMode>
weight: relative to equal share cweight>2¢/weight>
= minShare: min numCores <minShare>8</minShare>
</pool>
</allocations>
= Spark on Kubernetes $SPARK_HOME/bin/spark-submit \
) --master k8s://https://<k8s-api>:<k8s-api-port> \
= Run Spark in shared cluster --deploy-mode cluster
with Docker containerapps, —-dr‘}ver‘-java-optlons -server -Xms40g -Xmn4g" \
o --driver-memory 40g \
Distributed TensorFlow, etc --num-executors 10 \
--executor-memory 100g \
= Custom controller, and ——executor-cores 32 \
shuffle service (dynAIIoc) --conf spark.kubernetes.container.image=<sparkimg> \
706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Task Scheduling and Elasticity ﬂ-grls!.

Spa rk Dynamic Allocat|on [https://spark.apache.org/docs/

latest/job-scheduling.html]

= Configuration for YARN/Mesos
= Set spark.dynamicAllocation.enabled = true

= Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

= Executor Addition/Removal

= look at task pressure (pending tasks / idle executors)
= |ncrease exponentially (add 1, 2, 4, 8) if
pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

= Decrease executors they are idle for
spark.dynamicAllocation.executorIdleTimeout

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

https://spark.apache.org/docs/latest/job-scheduling.html

Task Scheduling and Elasticity ﬂ-grla'!.

Resource Elasticity in SystemML e o . | =52

Large-Scale Machine
Learning. SIGMOD 2015]

= Basic Ideas
= Optimize ML program resource configurations via online what-if analysis
= Generating and costing runtime plans for local/MR
= Program-aware grid enumeration, pruning, and re-optimization techniques

Min runtime w/o
unnecessary Resource ()
over-allocation request

YARN
Resource Manager

@

Cluster info

Resource Optimizer

Grid Search Cost

estimate
Program Memory
info T @ config planl @ L

SystemML Compiler @

Runtime
plan

ML Program

- read() _
:hil:?ac_l_ Y HOPs LOPs Runtime
2 Hw 5o i program

¥

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Ty

Summary and Q&A

Motivation, Terminology, and Fundamentals

Resource Allocation, Isolation, and Monitoring
Task Scheduling and Elasticity

Next Lectures
= 10 Distributed Data Storage [Dec 02]

706.520 Data Integration and Large-Scale Analysis — 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS

