
1
SCIENCE
PASSION

TECHNOLOGY

Data Integration and Large Scale Analysis
09 Distributed Data Storage

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Dec 02, 2022

2

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Announcements/Org

 Course Evaluation and Exam

 Exercise submission deadline Jan 13

 Evaluation period: Jan 13 – Feb 15

 Exam date: Feb 10, 2:30pm (60-90 min written exam)

3

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

4

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Agenda

 Motivation and Terminology

 Object Stores and Distributed File Systems

 Key-Value Stores and Cloud DBMS

5

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Motivation and Terminology

6

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Overview Distributed Data Storage

 Recap: Distributed DBS (03 Replication, MoM, and EAI)

 Distributed DB: Virtual (logical) DB, appears like a
local DB but consists of multiple physical DBs

 Components for global query processing

 Virtual DBS (homo.) vs federated DBS (hetero.)

 Cloud and Distributed Data Storage

 Motivation: size (large-scale), semi-structured/nested , fault tolerance

 #1 Cloud and Distributed Storage

 Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)

 Object storage: objects of limited size (e.g., 5TB), get/put (e.g., AWS S3)

 Distributed file systems: file system on block/object stores (NFS, HDFS)

 #2 Database as a Service

 NoSQL stores: Key-value stores, document stores

 Cloud DBMSs (SQL, for OLTP and OLAP workloads)

Motivation and Terminology

DB1

DB2
DB3

DB4

Global
Q

Q’ Q’’’
Q’’

7

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Central Data Abstractions

 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)

 Object: binary large object, with certain meta data

 #2 Distributed Collections

 Logical multi-set (bag) of key-value pairs
(unsorted collection)

 Different physical representations

 Easy distribution of pairs
via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value

4 Delta

2 Bravo

1 Alfa

3 Charlie

5 Echo

6 Foxtrot

7 Golf

1 Alfa

8

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Data Lakes

 Concept “Data Lake”

 Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

 No need for architected schema or upfront costs (unknown analysis)

 Typically: file storage in open, raw formats (inputs and intermediates)

 Distributed storage and analytics for scalability and agility

 Criticism: Data Swamp

 Low data quality (lack of schema,
integrity constraints, validation)

 Missing meta data (context) and
data catalog for search

 Requires proper data curation / tools
According to priorities (data governance)

Motivation and Terminology

[Credit: www.collibra.com]

http://www.collibra.com/

9

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Catalogs of Data and Artefacts

 Data Catalogs

 Data curation in repositories for finding relevant datasets in data lakes

 Augment data with open and linked data sources

 Examples

Motivation and Terminology

SAP Data Hub Google Data Search

[Alon Y. Halevy et al: Goods: Organizing
Google's Datasets. SIGMOD 2016]

[SAP Sapphire Now 2019]

10

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Object Stores and
Distributed File Systems

11

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Object Storage

 Recap: Key-Value Stores

 Key-value mapping, where values can be of a variety of data types

 APIs for CRUD operations; scalability via sharding (objects or object segments)

 Object Store

 Similar to key-value stores, but: optimized for large objects in GBs and TBs

 Object identifier (key), meta data, and object as binary large object (BLOB)

 APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

 Key Techniques

 Partitioning

 Replication &
Distribution

 Erasure Coding
(partitioning + parity)

Object Stores and Distributed File Systems

D
D1

D2

D3

Partitioning Replication D11

D21

D31

D12

D22

D32

D11 D21 D31D12 D22D32

Distribution

12

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Object Storage, cont.

 Example Object Stores / Protocols

 Amazon Simple Storage Service (S3)

 OpenStack Object Storage (Swift)

 IBM Object Storage

 Microsoft Azure Blob Storage

 Example Amazon S3

 Reliable object store for photos, videos, documents or any binary data

 Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/<identifier>

 Object: key, version ID, value, metadata, access control

 Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download

 Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE

 Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Object Stores and Distributed File Systems

13

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Hadoop Distributed File System (HDFS)

 Brief Hadoop History

 Google’s GFS + MapReduce [ODSI’04]
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

 HDFS Overview

 Hadoop’s distributed file system, for large clusters and datasets

 Implemented in Java, w/ native libraries for compression, I/O, CRC32

 Files split into 128MB blocks, replicated (3x), and distributed

Object Stores and Distributed File Systems

1 2 3 4 5 6M

Head Node Worker Nodes (shared-nothing cluster)

Hadoop Distributed File System (HDFS)

Client

Name
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

[Sanjay Ghemawat, Howard
Gobioff, Shun-Tak Leung: The

Google file system. SOSP 2003]

14

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS Daemon Processes

 HDFS NameNode

 Master daemon that manages file system
namespace and access by clients

 Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

 FSImage: checkpoint of FS namespace

 EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

 HDFS DataNode

 Worker daemon per cluster node that manages block storage (list of disks)

 Block creation, deletion, replication as individual files in local FS

 On startup: scan local blocks and send block report to name node

 Serving block read and write requests

 Send heartbeats to NameNode (capacity, current transfers) and
receives replies (replication, removal of block replicas)

Object Stores and Distributed File Systems

hadoop fs -ls ./data/mnist1m.bin

15

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS InputFormats and RecordReaders

 Overview InputFormats

 InputFormat: implements access to distributed collections in files

 Split: record-aligned block of file (aligned with HDFS block size)

 RecordReader: API for reading key-value pairs from file splits

 Examples: FileInputFormat, TextInputFormat, SequenceFileInputFormat

 Example
Text Read

Object Stores and Distributed File Systems

FileInputFormat.addInputPath(job, path); # path: dir/file
TextInputFormat informat = new TextInputFormat();
InputSplit[] splits = informat.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = informat
.getRecordReader(split, job, Reporter.NULL);

while(reader.next(key, value))
... //process individual text lines

}

16

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS InputFormats and RecordReaders, cont.

 Sequence Files

 Binary files for key/value pairs, w/ optional compression
(MapReduce/Spark inputs/outputs, MapReduce intermediates)

 InputFormat with readers, writers, and sorters

 Example Uncompressed SequenceFile

 Header: SEQ+version (4 bytes), keyClassName, valueClassName, compression,
blockCompression, compressor class (codec), meta data

 Splittable binary representation of key-value pair collection

Object Stores and Distributed File Systems

Header

Sy
n

c

Record Record Record

Sy
n

c

Record

Record
Length

Key
Length

Key Value
SystemDS: values are
1k x 1k matrix blocks

17

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS Write and Read

 HDFS Write

 #1 Client RPC to NameNode
to create file  lease/replica DNs

 #2 Write blocks to DNs, pipelined
replication to other DNs

 #3 DNs report to NN via heartbeat

 HDFS Read

 #1 Client RPC to NameNode
to open file  DNs for blocks

 #2 Read blocks sequentially from
closest DN w/ block

 InputFormats and RecordReaders
as abstraction for multi-part files
(incl. compression/encryption)

Object Stores and Distributed File Systems

M

Name
Node

1 2

Data
Node

Data
Node

Client

HDFS Client D1

D2

1. Create
foo.txt

D

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

M

Name
Node

1 2

Data
Node

Data
Node

HDFS Client D1

D2

1. Open
foo.txt

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

2
3

2

18

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS Data Locality

 Data Locality

 HDFS is generally rack-aware (node-local, rack-local, other)

 Schedule reads from closest data node

 Replica placement (rep 3): local DN, other-rack DN, same-rack DN

 MapReduce/Spark: locality-aware execution (function vs data shipping)

 Custom Locality Information

 Custom InputFormat and
FileSplit implementations

 Return customized mapping
of locations on getLocations()

 Can use block locations
of arbitrary files

Object Stores and Distributed File Systems

public class MyFileSplit extends FileSplit
{
public MyFileSplit(FileSplit x, ...) {}
@Override
public String[] getLocations() {
return new String[]{“node1”,“node7”};

}
}

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmp1 = fs.getFileBlockLocations(st, 0, st.getLen());

19

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

HDFS Federated NameNodes

 HDFS Federation

 Eliminate NameNode as
namespace scalability bottleneck

 Independent NameNodes,
responsible for name spaces

 DataNodes store blocks of
all NameNodes

 Client-side mount tables

 GFS Multiple Cells

 “We also ended up doing what we call
a "multi-cell" approach, which basically
made it possible to put multiple GFS
masters on top of a pool of chunkservers.”
-- Sean Quinlan

Object Stores and Distributed File Systems

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

[Kirk McKusick, Sean Quinlan:
GFS: evolution on fast-forward.

Commun. ACM 53(3) 2010]

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html

20

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Other DFS

 HDFS FileSystem Implementations (subset)

 LocalFileSystem (file), DistributedFileSystem (hdfs)

 FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs – mount table)

 NativeS3FileSystem (s3, s3a), NativeSwiftFileSystem, NativeAzureFileSystem

 Other proprietary: IBM GPFS, Databricks FS (DBFS)

 Google Colossus

 More fine-grained accesses, Google Cloud Storage

 High-Performance Computing

 Scope: Focus on high IOPs (instead of bandwidth) with block write

 IBM GPFS (General Parallel File System) / Spectrum Scale

 BeeGFS (Fraunhofer GFS) – focus on usability, storage/metadata servers

 Lustre (Linux + Cluster) – GPL license, LNET protocol / metadata / object storage

 RedHat GFS2 (Global File System) – Linux cluster file system, close to local

 NAS (Network Attached Storage), SAN (Storage Area Network)

 GekkoFS (Uni Mainz / Barcelona SC) – data-intensive HPC applications

Object Stores and Distributed File Systems

[WIRED: Google Remakes
Online Empire With 'Colossus',
https://www.wired.com/2012/

07/google-colossus/]

https://www.wired.com/2012/07/google-colossus/

21

706.520 Data Integration and Large-Scale Analysis – 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2021/22

Key-Value Stores and Cloud DBMS

22

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Motivation and Terminology

 Motivation

 Basic key-value mapping via simple API (more complex data models
can be mapped to key-value representations)

 Reliability at massive scale on commodity HW (cloud computing)

 System Architecture

 Key-value maps, where values
can be of a variety of data types

 APIs for CRUD operations
(create, read, update, delete)

 Scalability via sharding
(horizontal partitioning)

 Example Systems

 Dynamo (2007, AP)  Amazon DynamoDB (2012)

 Redis (2009, CP/AP)

Key-Value Stores and Cloud DBMS

[Giuseppe DeCandia et
al: Dynamo: amazon's

highly available key-
value store. SOSP 2007]

users:1:a “Inffeldgasse 13, Graz”

users:1:b “[12, 34, 45, 67, 89]”

users:2:a “Mandellstraße 12, Graz”

users:2:b “[12, 212, 3212, 43212]”

23

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Systems: Dynamo

 Motivation

 Simple, highly-available data storage for small objects in ~1MB range

 Aim for good load balance (99.9th percentile SLAs)

 #1 System Interface

 Simple get(k, ctx) and put(k, ctx) ops

 #2 Partitioning

 Consistent hashing of nodes and keys
on circular ring for incremental scaling

 Nodes hold multiple virtual nodes
for load balance (add/rm, heterogeneous)

 #3 Replication

 Each data item replicated N times
(at coord node and N-1 successors)

 Eventual consistency with async update
propagation based on vector clocks

 Replica synchronization via Merkle trees

Key-Value Stores and Cloud DBMS

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available

key-value store. SOSP 2007]

Amazon
e-Commerce

Platform

24

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Systems, cont.

 Redis Data Types

 Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

 Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)

 Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

 Redis APIs

 SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key

 MSET/MGET: insert or lookup multiple keys at once

 INCRBY/DECBY: increment/decrement counters

 Others: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

 Other systems

 Classic KV stores (AP): Riak, Aerospike, Voldemort,
LevelDB, RocksDB, FoundationDB, Memcached

 Wide-column stores: Google BigTable (CP),
Apache HBase (CP), Apache Cassandra (AP)

Key-Value Stores and Cloud DBMS

25

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Log-structured Merge Trees

 LSM Overview

 Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

 Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

 System Architecture

 Writes in C0

 Reads against
C0 and C1 (w/
buffer for C1)

 Compaction
(rolling merge):
sort, merge,
including
deduplication

Key-Value Stores and Cloud DBMS

[Patrick E. O'Neil, Edward Cheng,
Dieter Gawlick, Elizabeth J. O'Neil:

The Log-Structured Merge-Tree
(LSM-Tree). Acta Inf. 1996]

C0
writes

in-memory
buffer (C0)

max capacity T

on-disk
storage (C1)

C1t+1

reads

C1t

compaction

26

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Log-structured Merge Trees, cont.

 LSM Tiering (write optimized)

 Keep up to T-1 runs per level L

 Merge all runs of Li into 1 run of Li+1

 L1

 L2

 L3

 LSM Leveling (read optimized)

 Keep 1 run per level L

 Merge run of Li with Li+1

 L1

 L2

 L3

Key-Value Stores and Cloud DBMS

[Niv Dayan: Log-Structured-
Merge Trees, Comp115

guest lecture, 2017]

write-
optimized

read-
optimized

[Stratos Idreos, Mark Callaghan:
Key-Value Storage Engines
(Tutorial), SIGMOD 2020]

27

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Cloud Databases (DBaaS)

 Motivation DBaaS

 Simplified setup, maintenance, tuning and auto scaling

 Multi-tenant systems (scalability, learning opportunities)

 Different types based on workload (OLTP vs OLAP)

 Elastic Data Warehouses

 Motivation: Intersection of data warehousing (02 DWH, ETL, SQL/OLAP),
cloud computing (07/08 Cloud Computing), Distributed Storage (09 today)

 Example Systems

 #1 Snowflake

 #2 Google BigQuery (Dremel)

 #3 Amazon Redshift

 Azure SQL Data Warehouse

Key-Value Stores and Cloud DBMS

Microsoft

Commonalities:
SQL, column stores,

data on object store / DFS,
elastic cloud scaling

28

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Snowflake

 Motivation (impl started late 2012)

 Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)

 Pure SaaS experience, high availability, cost efficient

 Cloud Services

 Manage virtual DHWs,
TXs, and queries

 Meta data and catalogs

 Virtual Warehouses

 Query execution in EC2

 Caching/intermediates

 Data Storage

 Storage in AWS S3

 PAX / hybrid columnar

 Min-max pruning

Key-Value Stores and Cloud DBMS

[Benoît Dageville et al.: The
Snowflake Elastic Data

Warehouse. SIGMOD 2016]

29

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Google BigQuery

 Background Dremel

 Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)

 Data model: protocol buffers - strongly-typed nested records

 Storage model: columnar storage of nested data
(efficient splitting and assembly records)

 Query execution via multi-level serving tree

 BigQuery System Architecture

 Public impl of internal Dremel system (2012)

 SQL over structured, nested data (OLAP, BI)

 Extensions: web Uis, REST APIs and ML

 Data storage: Colossus (NextGen GFS)

Key-Value Stores and Cloud DBMS

[Sergey Melnik et al.: Dremel:
Interactive Analysis of Web-Scale

Datasets. PVLDB 3(1) 2010]

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

30

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Amazon Redshift

 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture

 Data plane: data storage and SQL execution

 Control plane: workflows for monitoring,
and managing databases, AWS services

 Data Plane

 Initial engine licensed from ParAccel

 Leader node + sliced compute nodes
in EC2 (with local storage)

 Replication across nodes + S3 backup

 Query compilation in C++ code

 Support for flat and nested files

Key-Value Stores and Cloud DBMS

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data

and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

31

706.520 Data Integration and Large-Scale Analysis – 09 Distributed Data Storage
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Summary and Q&A

 Motivation and Terminology

 Object Stores and Distributed File Systems

 Key-Value Stores and Cloud DBMS

 Next Lectures

 11 Distributed, Data-Parallel Computation [Jan 20]

 12 Distributed Stream Processing [Jan 27]

 13 Distributed Machine Learning Systems [Jan 27]

