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Announcements/Org

 #1 Video Recording 

 Link in TUbe & TeachCenter (lectures will be public)

 #2 Programming Exercises

 Grades available in TeachCenter

 #3 Course Evaluation and Exam

 Evaluation period: Jan 13 – Feb 15

 Exam date: Feb 10, 2:30pm (60+min written exam)
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Course Outline Part B:
Large-Scale Data Management and Analysis

07 Cloud Computing Fundamentals

08 Cloud Resource Management and Scheduling

09 Distributed Data Storage

10 Distributed Data-Parallel Computation

11 Distributed Stream
Processing

12 Distributed Machine 
Learning Systems

Compute/
Storage

Infra



4

706.520 Data Integration and Large-Scale Analysis – 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Agenda

 Motivation and Terminology

 Data-Parallel Collection Processing

 Data-Parallel DataFrame Operations

 Data-Parallel Computation in SystemDS
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Motivation and Terminology
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Recap: Central Data Abstractions

 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)

 Object: binary large object, with certain meta data

 #2 Distributed Collections

 Logical multi-set (bag) of key-value pairs
(unsorted collection)

 Different physical representations

 Easy distribution of pairs
via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value

4 Delta

2 Bravo

1 Alfa

3 Charlie

5 Echo

6 Foxtrot

7 Golf

1 Alfa
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Excursus: Nehalem Architecture

 Multi-core CPU 

 4 core w/ hyper-threading

 Per core: L1i/L1d, L2 cache

 Per CPU: L3 cache (8MB)

 3 memory channels 
(8B width, max 1.333Ghz)

 Pipeline

 Frontend: Instruction Fetch, 
Pre-Decode, and Decode 

 Backend: Rename/Allocate,
Scheduler, Execute

 Out-of-Order
Execution Engine (IPC=4)

 128b FP Multiply

 128b FP Add

Motivation and Terminology

[Michael E. Thomadakis: 
The Architecture of the 

Nehalem Processor and Nehalem-
EP SMP Platforms, Report, 2010]

QPI … Quick Path 
Interconnect
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Terminology

 Flynn’s Classification

 SISD, SIMD

 (MISD), MIMD

 Example: SIMD Processing

 Streaming SIMD Extensions (SSE)

 Process the same operation on 
multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism 
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W. 
Rudd: Parallel Architectures. 
ACM Comput. Surv. 28(1) 1996]
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Terminology cont.

 Distributed, Data-Parallel 
Computation

 Parallel computation of function foo()  single instruction

 Collection X of data items (key-value pairs) multiple data

 Data parallelism similar to SIMD but more coarse-grained notion of 
“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology

 BSP: Bulk Synchronous Parallel (global barriers)

 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)

 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)

 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past, 
Present and Future. PVM/MPI 2001]
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Data-Parallel Collection Processing



11

706.520 Data Integration and Large-Scale Analysis – 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Hadoop History and Architecture

 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System

 Management (Ambari)

 Coordination / workflows
(Zookeeper, Oozie)

 Storage (HDFS)

 Resources (YARN)
[SoCC’13]

 Processing 
(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]
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MapReduce – Programming Model

 Overview Programming Model

 Inspired by functional programming languages

 Implicit parallelism (abstracts distributed storage and processing)

 Map function: key/value pair  set of intermediate key/value pairs

 Reduce function: merge all intermediate values by key 

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts  line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total  iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model

Data-Parallel Collection Processing

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task

map 
task

map 
task

map 
task

map 
task

Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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MapReduce – Query Processing

 Basic Unary Operations

 Selections (brute-force), projections

 Ordering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort

 Additive and semi-additive aggregation with grouping, distinct

 Binary Operations

 Set operations 
(union, intersect, difference) and joins

 Different physical operators for R ⨝ S

 Broadcast join: broadcast S, build HT S, map-side HJOIN 

 Repartition join: shuffle (repartition) R and S, reduce-side MJOIN 

 Improved repartition join: avoid buffering via key-tag sorting

 Directed join (pre/co-partitioned): map-only, R input, S read side-ways 

 Hybrid SQL-on-Hadoop Systems [VLDB’15]

 E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

Data-Parallel Collection Processing

[Spyros Blanas et al.: A comparison 
of join algorithms for log processing 

in MapReduce. SIGMOD 2010]
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Spark History and Architecture 

 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility

 Restricted functional APIs  Implicit parallelism and fault tolerance

 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)

 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)

 Design: standing executors with in-memory storage, 
lazy evaluation, and fault-tolerance via RDD lineage

 Performance: In-memory storage and fast job scheduling (100ms vs 10s)

 APIs: Richer functional APIs and general computation DAGs, 
high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure

 Implicit parallelism through dist. collections (data access, fault tolerance) 

 Resource negotiators (YARN, Mesos, Kubernetes)

 HDFS and object store connectors (e.g., Swift, S3)

Data-Parallel Collection Processing
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Spark History and Architecture, cont.

 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)

 Different cluster managers:
Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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Spark Resilient Distributed Datasets (RDDs)

 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 

 Fault tolerance via lineage-based re-computation 

 Operations

 Transformations: 
define new RDDs

 Actions: return 
result to driver

 Distributed Caching

 Use fraction of worker memory for caching

 Eviction at granularity of individual partitions

 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Spark Resilient Distributed Datasets (RDDs), cont.

 Lifecycle of an RDD

 Note: can’t broadcast 
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())

X.cache()

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Spark Partitions and Implicit/Explicit Partitioning

 Spark Partitions

 Logical key-value collections are split into physical partitions

 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners

 Implicitly on every data shuffling

 Explicitly via R.repartition(n)

 Partitioning-Preserving

 All operations that are guaranteed to keep keys unchanged 
(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting

 Join: R3 = R1.join(R2)

 Lookups: 
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3

⋈ ⋈
Hash partitioned

~128MB
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Spark Scheduling Process

Data-Parallel Collection Processing

DAG TaskSet

Workers

execute tasks

store and serve 
blocks

Block 
manager

Threads

rdd1.join(rdd2)
.reduceByKey(…)
.filter(…)

RDD Objects

build 
operator DAG

DAGScheduler

split graph into 
stages of tasks

submit each 
stage as ready

TaskScheduler

launch tasks at 
workers

retry failed or 
straggling tasks

Scheduler 
Backend

Task

[Tilmann Rabl: 
Big Data Systems, 
HPI WS2019/20]
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Spark Lazy Evaluation, Caching, and Lineage

Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached
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Example: k-Means Clustering

 k-Means Algorithm

 Given dataset D and number of clusters k, find cluster centroids 
(“mean” of assigned points) that minimize within-cluster variance

 Euclidean distance: sqrt(sum((a-b)^2))

 Pseudo Code

Data-Parallel Collection Processing

function Kmeans(D, k, maxiter) {
C‘ = randCentroids(D, k);
C = {};
i = 0; //until convergence
while( C‘ != C & i<=maxiter ) {
C = C‘;
i = i + 1;
A = getAssignments(D, C);
C‘ = getCentroids(D, A, k);

}
return C‘

}
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Example: K-Means Clustering in Spark

Data-Parallel Collection Processing

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

Note: Existing library algorithm
[https://github.com/apache/spark/blob/master/mllib/src/

main/scala/org/apache/spark/mllib/clustering/KMeans.scala] 

// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv“)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))

.foldByKey(new Mean(0), new IncComputeCentroids())

.collectAsMap();
}

return C;

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
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Data-Parallel DataFrame Operations
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Origins of DataFrames

 Recap: Data Preparation Problem

 80% Argument: 80-90% time for finding, integrating, cleaning data

 Data scientists prefer scripting languages and in-memory libraries

 R and Python DataFrames

 R data.frame/dplyr and Python pandas DataFrame for 
seamless data manipulations (most popular packages/features)

 DataFrame: table with a schema

 Descriptive stats and basic math, reorganization, joins, grouping, windowing

 Limitation: Only in-memory, single-node operations

 Example 
Pandas

Data-Parallel DataFrame Operations

import pandas as pd

df = pd.read_csv(‘data/tmp1.csv’, index_col=2)
df.head() # df w/ indexes A-Z

df = pd.concat(df, df[[‘A’,’C’]], axis=0) 
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Spark DataFrames and DataSets

 Overview Spark DataFrame

 DataFrame is distributed collection of rows
with named/typed columns

 Relational operations (e.g., projection, 
selection, joins, grouping, aggregation)

 DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

 DataFrame and Dataset APIs

 DataFrame was introduced as basis for Spark SQL 

 DataSets allow more customization and compile-time analysis errors (Spark 2)

 Example 
DataFrame

Data-Parallel DataFrame Operations

DataFrame = Dataset[Row]

logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark – SQL, 
DataFrames, Datasets, and Streaming, Spark Summit 2016]

 PySpark
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SparkSQL and DataFrame/Dataset 

 Overview SparkSQL

 Shark (~2013): academic prototype for SQL on Spark

 SparkSQL (~2015): reimplementation from scratch

 Common IR and compilation of SQL and DataFrame operations

 Catalyst: Query Planning

 Performance features

 #1 Whole-stage code generation via Janino

 #2 Off-heap memory (sun.misc.Unsafe) for caching and certain operations

 #3 Pushdown of selection, projection, joins into data sources (+ join ordering)

Data-Parallel DataFrame Operations

[Michael Armbrust et al.: Spark 
SQL: Relational Data Processing 

in Spark. SIGMOD 2015]
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Dask

 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes

 dask.array:
list of numpy n-dim arrays

 dask.dataframe:
list of pandas data frames

 dask.bag:unordered list of tuples (second order functions)

 Local and distributed schedulers:
threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution

 Lazy evaluation

 Limitation: requires 
static size inference

 Triggered via
compute()

Data-Parallel DataFrame Operations

[Matthew Rocklin: Dask: Parallel Computation with Blocked 
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task 

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

https://dask.org/


29

706.520 Data Integration and Large-Scale Analysis – 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Data-Parallel Operations 
in SystemDS / DAPHNE

[Matthias Boehm et al.: SystemDS: A Declarative Machine Learning 
System for the End-to-End Data Science Lifecycle. CIDR 2020]

[Matthias Boehm et al.: SystemML: Declarative Machine Learning 
on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemML: Declarative Machine Learning 
on MapReduce. ICDE 2011]
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Background: Matrix Formats

 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here

 Local matrix: single block, different representations

 Common Block Representations

 Dense (linearized arrays)

 MCSR (modified CSR)

 CSR (compressed sparse rows), CSC

 COO (Coordinate matrix)

Data-Parallel Operations in SystemDS / DAPHNE

.7 .1

.2 .4

.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0

Dense (row-major)
.7

.1

.2

.4

.3

0

2

0

1

1

0

2

4

5

CSR

.7

.1

.2

.4

.3

0

2

0

1

1

COO

0

0

1

1

2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations

 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)

 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemML/SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning

 Logical Partitioning 
(e.g., row-/column-wise)

 Physical Partitioning
(e.g., hash / grid)

 PartitionPruning for Indexing

Data-Parallel Operations in SystemDS / DAPHNE

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 
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Distributed Matrix Operations

Data-Parallel Operations in SystemDS / DAPHNE

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join
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Summary and Q&A

 Motivation and Terminology

 Data-Parallel Collection Processing

 Data-Parallel DataFrame Operations

 Data-Parallel Computation in SystemDS / DAPHNE

 Next Lectures 

 12 Distributed Stream Processing [Jan 27] 

 13 Distributed Machine Learning Systems [Jan 27]

 Q&A Session including sample exam questions


