Ty

SCIENCE
PASSION
TECHNOLOGY

Data Integration and Large Scale Analysis
10 Distributed Data-Parallel Computation

Shafaq Siddiqi

Graz University of Technology, Austria
slides credit: Matthias Boehm

Last update: Jan 20, 2023 *ISDS



Ty

Announcements/Org

= #1 Video Recording
= Link in TUbe & TeachCenter (lectures will be public)

= #2 Programming Exercises
= Grades available in TeachCenter
= #3 Course Evaluation and Exam
= Evaluation period: Jan 13 — Feb 15
= Exam date: Feb 10, 2:30pm (60+min written exam)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

&3 TUbe

1T
cisco W

“ISDS



Ty

Course Outline Part B:
Large-Scale Data Management and Analysis

11 Distributed Stream 12 Distributed Machine
Processing Learning Systems

10 Distributed Data-Parallel Computation
Compute/
Storage
09 Distributed Data Storage
08 Cloud Resource Management and Scheduling
Infra
07 Cloud Computing Fundamentals

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23 u



Ty

Agenda

= Motivation and Terminology

= Data-Parallel Collection Processing

= Data-Parallel DataFrame Operations

= Data-Parallel Computation in SystemDS

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS



Ty

Motivation and Terminology

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS



Motivation and Terminology ﬁ-lc;la'!l

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs
' Delta
(unsorted collection)
Bravo

= Easy distribution of pairs Alfa

4
= Different physical representations -
1
via horizontal partitioning 3 Charlie
5
6
7
1

(aka shards, partitions)
Echo

Foxtrot

= Can be created from single file,
or directory of files (unsorted)

Golf
Alfa

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Ty

Motivation and Terminology

[Michael E. Thomadakis:

Excursus: Nehalem Architecture  oe - omecals

Nehalem Processor and Nehalem-
EP SMP Platforms, Report, 2010]

" Multi-core CPU
= 4 core w/ hyper-threading b e IR
= Per core: L1i/L1d, L2 cache '
= Per CPU: L3 cache (8MB)

= 3 memory channels
(8B width, max 1.333Ghz)

QPI ... Quick Path
Interconnect

Mié@

Nehalem RISC
micro-operations

Nehalem Execution Engine

" Pipeline
P Qut-of-order Pipelines

" Frontend: Instruction Fetch, I o e L [Register Alas Table and Alocator]
2 . ! . Q Reorder-Buffer
_ |$- Retirement Register File |« ©
Pre-Decode, and Decode T B o e [
1E 0!
= Backend: Rename/Allocate, v
| Unified Reservation Stations (URS) 36 entries
Scheduler, Execute | =
-5: y 2) s o
® Integer ALU & M Integer ALU & Store Store Integer ALU &
a £ i LEA Address Data Shi
o =5
u Out-Of-Order _gi % Branch
° . L 02
Execution Engine (IPC=4) g Meory rder Buter
i SSE Integer ALU SSE Integer (MOB) SSE Integer ALU
= 128b FP Multiply |
Y
Nehalem RISC 1 168 W8P 29 oS
u 1 2 8 b F P Ad d micro-operations ,'&%fl‘e 32 kiB L1 :sci}}:

Data Cache




Motivation and Terminology ﬁ-IG-rlan-

Terminology

= Flynn’s Classification

Single Data Multiple Data

= SISD, SIMD | Single SISD SIMD
nstruction i
= (MISD), MIMD (uni-core) (vector)
[Michael J. Flynn, Kevin W. _
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

Streaming SIMD Extensions (SSE)

Process the same operation on
multiple elements at a time

acked vs scalar SSE instructions
(p ' ) ¢ = _mm512_fmadd_pd(a, b);
Data parallelism 1 T T T 1

; . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T T 1
Example: VFMADD132PD cp 1 [ I ¢ 1T I 1 1

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Motivation and Terminology ﬂ-!rls!.

Terminology cont.

= Distributed, Data-Parallel Y = X.map(x -> foo(x))
Computation

= Parallel computation of function foo() =
= Collection X of data items (key-value pairs) =

= Data parallelism similar to SIMD but more coarse-grained notion of
“instruction” and “data” =2 SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

= Additional Terminology

= Bulk Synchronous Parallel (global barriers)
= Asynchronous Parallel (no barriers, often with accuracy impact)
= Stale-synchronous parallel (staleness constraint on fastest-slowest)

= QOther: Fork&Join, Hogwild!, event-based, decentralized

= Beware: used in very different contexts (e.g., Param Server)
706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Ty

Data-Parallel Collection Processing

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

ClEGEED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
= Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1  Worker Node n

= Coordination / workflows
(Zookeeper, Oozie)

| |

I

= Storage (HDFS) i 2’:\'; MR :: MR MR :
= Resources (YARN) ! task |, | task || task |,
[SoCC’13] : MR MR : : MR MR :

= Processing Resource : task || task :: task || task :
(MapReduce) Manager : Node : : :

1 Manager [l Manager [

MR Client : DataNode : : :
113]2EE 3]2]9 ER




Data-Parallel Collection Processing ﬂ-!rls!.

MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
= function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

(Long pos, String line) {
parts <& line.split(“,”)

X = emit(parts[1], 1)
Y CS .

} s 1 (String dep, .
A EE Iterator<Long> iter) {
7 cS S 1 total <& iter.sum();

EE 1 emit(dep, total)
: CS 3
Collection of cS 1 }

key/value pairs EE 1



Ty

Data-Parallel Collection Processing

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

Input CSV files
(stored in HDFS)

Map-Phase

Sort, [Combine], [Compress]

[Reduce-Phase]  Output Files
f (HDFS)
CSV |\ B
File 1 (
|
|' task 7
CSV | reduce
K as 7
— d
csV |, task 7
File 3 ; / —>
1
7'\ //ghufﬂe, Merge,
[Combine]

w/ #reducers = 3



Data-Parallel Collection Processing ﬂ-grls!.

MapReduce — Query Processing

= Basic Unary Operations
= Selections (brute-force), projections
= Ordering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort
= Additive and semi-additive aggregation with grouping, distinct

" Binary Operatlons [Spyros Blanas et al.: A comparison
= Set operations of join algorithms for log processing

ion, i ' . in MapReduce. SIGMOD 2010
(union, intersect, difference) and joins in MapReduce ]

= Different physical operators for R < S

= : broadcast S, build HT S, map-side HJIOIN

= : shuffle (repartition) R and S, reduce-side MJOIN

= avoid buffering via key-tag sorting

= (pre/co-partitioned): map-only, R input, S read side-ways

= Hybrid SQL-on-Hadoop Systems [VLDB’15]
= E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing ﬂ-IG-rlan-

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APls =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink) &7

= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014)  SpPark

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)



Data-Parallel Collection Processing ﬂ-grlan.

Spark History and Architecture, cont.

= High-Level Architecture [https://spark.apache.org/]

Different language bindings:
Scala, Java, Python, R

MLlIlib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes

e I N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL SprK L hadg(gp

SR -
5% MEsos £ kubernetes

learning)

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23


https://spark.apache.org/

Data-Parallel Collection Processing ﬂ-IG-rlan-

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations:  Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing ﬁ-IG-rlan-

Spark Resilient Distributed Datasets (RDDs), cont.

"= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()

sc.parallelize(1lst)

Local Data = Distributed
(value, collection) & Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing ﬂ-IG-rlan-

Spark Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

= Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

e .. Hash partitioned
= Partitioning-Exploiting ash partitione

el
= Join: R3 = R1.join(R2) 0:8.1 6 0:1 2 B 0; 3,6 —I:IE
= Lookups: — X : O» 2:2 58 —m
v = C.lookup(k) 1' 4' 7' - _m

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23




Data-Parallel Collection Processing

Ty

Spark Scheduling Process

RDD Objects

rddl.join(rdd2)
.reduceByKey(...)

DAGScheduler

split graph into
stages of tasks

Big Data Systems,
HPI WS2019/20]

TaskScheduler
|
|
: Scheduler
! Backend
TasFSet

N

launch tasks at
workers

______________l

[Tilmann Rabl:

Workers
|
Threads
Block
I manager

execute tasks

-
o = D) o
7]
l x

.filter(..)
build submit each retry failed or store and serve
operator DAG stage as ready straggling tasks blocks
706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing ﬁ-lc:rlan.

Spark Lazy Evaluation, Caching, and Lineage

,// """"""" ~ \
| A \ L \
- partitioning- |
I aware :
1 |
1| G :
1 |
: \ Stagel :
""""" I
: ,’ _____________________ —
I
o ¢ 2 | reduce
I I
I
. ;
y :
y :
I |
I : - I :
y I :
Iy - |
\  Stage?2 // Stage 3 l' .
S C-C-----C-----C-----o-cooo — _“ cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]




Data-Parallel Collection Processing ﬂ-IG-rlan-

Example: k-Means Clustering

= k-Means Algorithm

= Gijven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

n Pseudo Code Clustering Result with k = 4, max_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { i
C¢ = randCentroids(D, k); ol
C=A}
i = @; //until convergence al
while( C° != C & i<=maxiter ) { _ sf
C =C*
i=1+ 1; '
A = getAssignments(D, C); ar o ke
C¢ = getCentroids(D, A, k); L R
}
return C° ° 5 p 6 P 10 1 14
} ;
706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Collection Processing ﬂ-IG-rlaJZI

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())

.collectAsMap();
} o .
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]
706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23


https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala

Data-Parallel DataFrame Operations

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel DataFrame Operations ﬂ-grls!.

Origins of DataFrames

= Recap: Data Preparation Problem
= 80% Argument: 80-90% time for finding, integrating, cleaning data
= Data scientists prefer scripting languages and in-memory libraries

= R and Python DataFrames

= Rdata.frame/dplyr and Python pandas DataFrame for
seamless data manipulations (most popular packages/features)

= DataFrame:
= Descriptive stats and basic math, reorganization, joins, grouping, windowing
= Limitation: Only in-memory, single-node operations

= Example import pandas as pd

Pandas df = pd.read_csv(‘data/tmpl.csv’, index col=2)
df.head() # df w/ indexes A-Z

df = pd.concat(df, df[[‘A’,’C’]], axis=0)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel DataFrame Operations ﬂ-grlan.

Spark DataFrames and DataSets

= Overview Spark DataFrame so6c | |consoe || Userprograms

ava, ocala, Python

= D is distri llection of row £ L £
z-;\taFrame is distributed collection of rows -
with named/typed columns | S p—— |

= Relational operations (e.g., projection, e

selectlon’ jOInS, grouplng’ aggregatlon) | Resilient Distributed Datasets |

= DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

= DataFrame and Dataset APIs DataFrame = Dataset[Row]

= DataFrame was introduced as basis for Spark SQL
= DataSets allow more customization and compile-time analysis errors (Spark 2)

= Example logs = spark.read.format("“json").open("s3://logs")

DataFrame logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark — SQL, - PySpark
DataFrames, Datasets, and Streaming, Spark Summit 2016]

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel DataFrame Operations ﬂ-!rls!.

SparkSQL and DataFrame/Dataset Soark’soL

= Overview SparkSQL [Michael Armbrust et al.: Spark

SQL: Relational Data Processing
in Spark. SIGMOD 2015]

= Shark (~2013): academic prototype for SQL on Spark
= SparkSQL (~2015): reimplementation from scratch

= Common IR and compilation of SQL and DataFrame operations

= Catalyst: Query Planning

. Logical Physical Code
Analysis Optimization Planning Generation
SQL Query g
Unresolved Loaical PI Optimized Physical — Eilegtec? DD
Logical Plan ogical Fan Logical Plan ll Plans = pyéfa S
o
DataFrame O
Catalog
= Performance features
"= #1 via Janino
= H#2 (sun.misc.Unsafe) for caching and certain operations
= #3 of selection, projection, joins into data sources (+ join ordering)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel DataFrame Operations

Ty

Da S k I DASK [Matthew Rocklin: Dask: Parallel Computation with Blocke

= Overview Dask

algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task
scheduling, 2016, https://dask.org]

d

Multi-threaded and distributed operations for arrays, bags, and dataframes

dask.array: Numpy Pandas
list of numpy n-dim arrays }:h - -
dask.dataframe: = e o,

list of pandas data frames
dask.bag:unordered list of tuples (second order functions)

Local and distributed schedulers:
threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

Lazy evaluation x = da.random.random(

(10000,10000), chunks=(1000,1000))
y = X + X.T
y.persist() # cache in memory

Limitation: requires
static size inference

Triggered via z = y[::2, 5000:].mean(axis=1) # colMeans

compute() ret = z.compute() # returns NumPy array

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

“ISDS


https://dask.org/

Ty

Data-Parallel Operations
in SystemDS / DAPHNE

[Matthias Boehm et al.: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

[Matthias Boehm et al.: SystemMIL: Declarative Machine Learning
on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemVIL: Declarative Machine Learning
on MapReduce. ICDE 2011]

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Operations in SystemDS / DAPHNE ﬁ-IG-rlan-

Background: Matrix Formats

= Matrix Block (m x n) Example
= A.k.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ‘/,'// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR
‘\-l;-a ol .7 .7
Dense (row-major) h G 2L B#Rl.1 1
.7101.1.2/.40,0|.3/0 o 4 4\ l|.2 .2
— 5\ kN .4 A4
O(mn)
3 N .3 iy .3
O(m + nnz(X)) O(nnz(X))
706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS

Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Operations in SystemDS / DAPHNE ﬂ-grls!.

Distributed Matrix Representations
Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400%2,700 Matrix
2 (duplicates, unordered) (w/ B.=1,000)
= |ogical (Fixed-Size) Blocking a1 || 1.2 |la,3)

+ join processing / independence
- (sparsity skew) (2,1) || (2:2) |[(2,3)

= E.g., SystemML/SystemDS on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock> G 6:2)))33)

= Blocks encoded independently (dense/sparse) (4,1) ]| (4,2) ]|(4,3)
= Pa rtitioning hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0
(32 (23 @1 (1,2 (2 (41
= Logical Partitioning _ - ] ] 5 s US
(e.g., row-/column-wise) PhYS'Cal om0
: e Blocking and * partition 0
= Physical Partitioning e 22 (1L1) (1L3) (33) (1) (43)
. Partitioning
(e.g., hash / grid) 5 us | lus |l g ¢ ||Us
= PartitionPruning for Indexing partition 1)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Data-Parallel Operations in SystemDS / DAPHNE ﬁ-IG-rlaJZI

Distributed Matrix Operations

Elementwise Multiplication . Matrix
(Hadamard Product) Transposition Multiplication
C=A*B C = t(X) C =X %% W
T = — 2 | . . W
Ay [|Ape B ||Baa \\ X11) || X(12) // (1.1)

e
~
J

T
|
I
I
H
|l
I
s

— - — — — |+ —»
Apy) ||Apay Bpi1) || Bpa
— | === __ |l _g
A[S 1) A[S_,?.j B[S 1) B[S 2}

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



Ty

Summary and Q&A

Motivation and Terminology

Data-Parallel Collection Processing

Data-Parallel DataFrame Operations
Data-Parallel Computation in SystemDS / DAPHNE

Next Lectures
= 12 Distributed Stream Processing [Jan 27]
= 13 Distributed Machine Learning Systems [Jan 27]
= Q&A Session including sample exam questions

706.520 Data Integration and Large-Scale Analysis — 10 Distributed, Data-Parallel Computation .ISDS
Shafaq Siddiqi, Graz University of Technology, WS 2022/23



