
1
SCIENCE
PASSION

TECHNOLOGY

Data Integration and Large Scale Analysis
11 Stream Processing

Shafaq Siddiqi

Graz University of Technology, Austria
Slides credit: Matthias Boehm

Last update: Jan 27, 2023

2

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Announcements/Org

 #1 Course Evaluation and Exam

 Evaluation period: Jan 15 – Feb 15

 Exam date: Feb 10, 2:30 pm (60+min written exam)

3

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Agenda

 Data Stream Processing

 Distributed Stream Processing

 Data Stream Mining

4

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Data Stream Processing

5

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Processing Terminology

 Ubiquitous Data Streams

 Event and message streams (e.g., click stream, twitter, etc)

 Sensor networks, IoT, and monitoring (traffic, env, networks)

 Stream Processing Architecture

 Infinite input streams, often with window semantics

 Continuous (aka standing) queries

Data Stream Processing

DBMS

Queries

Stored Data

“data at
rest”

Stored (Continuous)
Queries

Input
Stream

Output
Stream

Stream Processing Engines

“data in
motion”

6

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Processing Terminology, cont.

 Use Cases

 Monitoring and alerting (notifications on events / patterns)

 Real-time reporting (aggregate statistics for dashboards)

 Real-time ETL and event-driven data updates

 Real-time decision making (fraud detection)

 Data stream mining (summary statistics w/ limited memory)

 Data Stream

 Unbounded stream of data tuples S = (s1, s2, …) with si = (ti, di)

 Real-time Latency Requirements

 Real-time: guaranteed task completion by a given deadline (30 fps)

 Near Real-time: few milliseconds to seconds

 In practice, used with much weaker meaning

Data Stream Processing

Continuously
active

7

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

History of Stream Processing Systems

 2000s

 Data stream management systems (DSMS, mostly academic prototypes):
STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02)  Borealis (‘05),
NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley’03), and many others

 but mostly unsuccessful in industry/practice

 Message-oriented middleware and Enterprise Application Integration (EAI):
IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

 2010s

 Distributed stream processing engines, and “unified” batch/stream processing

 Proprietary systems: Google Cloud Dataflow, MS StreamInsight / Azure Stream
Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis

 Open-source systems: Apache Spark Streaming (Databricks), Apache Flink
(Data Artisans), Apache Kafka (Confluent), Apache Storm

Data Stream Processing

8

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

System Architecture – Native Streaming

 Basic System Architecture

 Data flow graphs (potentially
w/ multiple consumers)

 Nodes: asynchronous ops (w/ state)
(e.g., separate threads)

 Edges: data dependencies
(tuple/message streams)

 Push model: data production
controlled by source

 Operator Model

 Read from input queue

 Write to potentially
many output queues

 Example Selection
σA=7

Data Stream Processing

while(!stopped) {
r = in.dequeue(); // blocking
if(pred(r.A)) // A==7

for(Queue o : out)
o.enqueue(r); // blocking

}

Archive

State

9

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

System Architecture – Sharing

 Multi-Query Optimization

 Given set of continuous queries (deployed), compile minimal DAG w/o
redundancy (see DM 08 Physical Design MV)  subexpression elimination

 Operator and Queue Sharing

 Operator sharing: complex ops w/ multiple predicates for adaptive reordering

 Queue sharing: avoid duplicates in output queues via masks

Data Stream Processing

SAS SUS SEU

σa σb σc

∪

T1

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

⋈A=B

SUS SEU

σb σc

∪

T2

Ad

σd

SAS

σa

∪

T1

10

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

System Architecture – Handling Overload

 #1 Back Pressure

 Graceful handling of
overload w/o data loss

 Slow down sources

 E.g., blocking queues

 #2 Load Shedding

 #1 Random-sampling-based load shedding

 #2 Relevance-based load shedding

 #3 Summary-based load shedding (synopses)

 Given SLA, select queries and shedding placement
that minimize error and satisfy constraints

 #3 Distributed Stream Processing (see last part)

 Data flow partitioning (distribute the query)

 Key range partitioning (distribute the data stream)

Data Stream Processing

B CA

Self-adjusting operator scheduling
Pipeline runs at rate of slowest op

2ms9ms3ms

[Nesime Tatbul et al: Load
Shedding in a Data Stream

Manager. VLDB 2003]

11

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Time (Event, System, Processing)

 Event Time

 Real time when the event/
data item was created

 Ingestion Time

 System time when the
data item was received

 Processing Time

 System time when the
data item is processed

 In Practice

 Delayed and unordered data items

 Use of heuristics (e.g., water marks = delay threshold)

 Use of more complex triggers (speculative and late results)

Data Stream Processing

Event Time

Processing
Time

skew ideal

12

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Durability and Consistency Guarantees

 #1 At Most Once

 “Send and forget”, ensure data is never counted twice

 Might cause data loss on failures

 #2 At Least Once

 “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures

 Might create incorrect state (processed multiple times)

 #3 Exactly Once

 “Store and forward” w/ guarantees regarding state updates and sent msgs

 Often via dedicated transaction mechanisms

Data Stream Processing

03 Message-oriented
Middleware, EAI, and

Replication

13

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Window Semantics

 Windowing Approach

 Many operations like joins/aggregation undefined over unbounded streams

 Compute operations over windows of (a) time or (b) elements counts

 #1 Tumbling Window

 Every data item is only
part of a single window

 Aka Jumping window

 #2 Sliding Window

 Time- or tuple-based
sliding windows

 Insert new and
expire old data items

Data Stream Processing

12:05 12:07 12:09

size = 2min

12:05 12:07 12:09

size = 2min, step = 1min

14

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Joins

 Basic Stream Join

 Tumbling window:
use classic join methods

 Sliding window (symmetric
for both R and S)

 Applies to arbitrary join pred

 See DM 08 Query Processing (NLJ)

 Excursus: How Soccer Players
Would do Stream Joins

 Handshake-join w/ 2-phase forwarding

Data Stream Processing

For each new r in R:
1. Scan window of stream S

to find match tuples
2. Insert new r into window

of stream R
3. Invalidate expired tuples

in window of stream R

[Jens Teubner, René Müller: How
soccer players would do stream

joins. SIGMOD 2011]

15

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Joins, cont.

 Double-Pipelined Hash Join

 Join of bounded streams (or unbounded w/ invalidation)

 Equi join predicate, symmetric and non-blocking

 For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Data Stream Processing

⋈RID=SID
HR,RID HS,SID

1 ab

2 cd

1 ef

7 gh

7 zy

1 xw

7 vu

HR,RID

1, 2

HR,RID

1, 2, 7

HS,SID

7

HS,SID

1, 7

Stream
R

Stream
S

emit 1(abxw)

emit 1(efxw)

emit 7(ghzy)

[Zachary G. Ives, Daniela Florescu, Marc
Friedman, Alon Y. Levy, Daniel S. Weld: An
Adaptive Query Execution System for Data

Integration. SIGMOD 1999]

emit 7(ghvu)

HS,SID

1, 7, 7

HR,RID

1, 1, 2

HR,RID

1, 1, 2, 7

16

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Distributed Stream Processing

17

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Query-Aware Stream Partitioning

 Example Use Case

 AT&T network monitoring with
Gigascope (e.g., OC768 network)

 2x40 Gbit/s traffic  112M packets/s  26 cycles/tuple on 3Ghz CPU

 Complex query sets (apps w/ ~50 queries) and massive data rates

 Baseline Query
Execution Plan

Distributed Stream Processing

[Theodore Johnson, S. Muthu Muthukrishnan,
Vladislav Shkapenyuk, Oliver Spatscheck:
Query-aware partitioning for monitoring

massive network data streams. SIGMOD 2008]

Query flows:
SELECT tb, srcIP, destIP, COUNT(*) AS cnt

FROM TCP WHERE ...
GROUP BY time/60 AS tb,srcIP,destIP

Query heavy_flows:
SELECT tb,srcIP,max(cnt) as max_cnt

FROM flows
GROUP BY tb, srcIP

Query flow_pairs:
SELECT S1.tb, S1.srcIP, S1.max, S2.max

FROM heavy_flows S1, heavy_flows S2
WHERE S1.srcIP = S2.srcIP
and S1.tb = S2.tb+1

γ1

σ

TCP

Low-level filtering

Low-level aggregation

γ2High-level aggregation

⋈tb=tb+1Self join

18

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Query-Aware Stream Partitioning, cont.

 Optimized Query
Execution Plan

 Distributed plan
operators

 Pipeline and task
parallelism

Distributed Stream Processing

σ

TCP

γ1

γ2

⋈tb=tb+1

γ2

⋈tb=tb+1

∪

Host 1

σ

TCP

σ

TCP

σ

TCP

Host 2 Host 3

Host 4

σ

TCP

Partitioning
on srcIP

γ1 γ1 γ1

γ1

19

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Group Partitioning

 Large-Scale Stream Processing

 Limited pipeline parallelism and task parallelism (independent subqueries)

 Combine with data-parallelism over stream groups

 #1 Shuffle Grouping

 Tuples are randomly distributed across consumer tasks

 Good load balance

 #2 Fields Grouping

 Tuples partitioned by grouping attributes

 Guarantees order within keys, but load imbalance if skew

 #3 Partial Key Grouping

 Apply “power of two choices” to streaming

 Key splitting: select among 2 candidates per key
(works for all associative aggregation functions)

 #4 Others: Global, None, Direct, Local

Distributed Stream Processing

[Md Anis Uddin Nasir et al:
The power of both choices:
Practical load balancing for

distributed stream processing
engines. ICDE 2015]

11 Distributed, Data-Parallel
Computation

20

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Apache Storm

 Example Topology DAG

 Spouts: sources
of streams

 Bolts: UDF
compute ops

 Tasks mapped to
worker processes
and executors
(threads)

Distributed Stream Processing

Spout 1

Bolt 1

Bolt 2

Bolt 3

Config conf = new Config();
conf.setNumWorkers(3);

topBuilder.setSpout("Spout1", new FooS1(), 2);
topBuilder.setBolt("Bolt1", new FooB1(), 3).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt2", new FooB2(), 2).shuffleGrouping("Spout1");
topBuilder.setBolt("Bolt3", new FooB3(), 2)

.shuffleGrouping("Bolt1").shuffleGrouping("Bolt2");

StormSubmitter.submitTopology(..., topBuilder.createTopology());

21

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Example Twitter Heron

 Motivation

 Heavy use of Apache Storm
at Twitter

 Issues: debugging,
performance, shared
cluster resources,
back pressure mechanism

 Twitter Heron

 API-compatible distributed streaming engine

 De-facto streaming engine at Twitter since 2014

 Dhalion (Heron Extension)

 Automatically reconfigure Heron topologies
to meet throughput SLO

 Now back pressure implemented in Apache Storm 2.0 (May 2019)

Distributed Stream Processing

Data per
day

Cluster
Size

of
Topologies

of Msgs
per day

[Credit: Karthik Ramasamy]

[Sanjeev Kulkarni et al:
Twitter Heron: Stream

Processing at Scale.
SIGMOD 2015]

[Avrilia Floratou et al:
Dhalion: Self-Regulating

Stream Processing in Heron.
PVLDB 2017]

22

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Discretized Stream (Batch) Computation

 Motivation

 Fault tolerance (low overhead, fast recovery)

 Combination w/ distributed batch analytics

 Discretized Streams (DStream)

 Batching of input tuples (100ms – 1s) based on ingest time

 Periodically run distributed jobs of stateless, deterministic tasks DStreams

 State of all tasks materialized as RDDs, recovery via lineage

 Criticism: High latency, required for batching

Distributed Stream Processing

Sequence of immutable,
partitioned datasets (RDDs)

Batch
Computation

[Matei Zaharia et al: Discretized
streams: fault-tolerant

streaming computation at
scale. SOSP 2013]

23

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Unified Batch/Streaming Engines

 Apache Spark Streaming (Databricks)

 Micro-batch computation with exactly-once guarantee

 Back-pressure and water mark mechanisms

 Structured streaming via SQL (2.0), continuous streaming (2.3)

 Apache Flink (Data Artisans, now Alibaba)

 Tuple-at-a-time with exactly-once guarantee

 Back-pressure and water mark mechanisms

 Batch processing viewed as special case of streaming

 Google Cloud Dataflow

 Tuple-at-a-time with exactly-once guarantee

 MR  FlumeJavaMillWheel  Dataflow

 Google’s fully managed batch and stream service

 Apache Beam (API+SDK from Dataflow)

 Abstraction for Spark, Flink, Dataflow w/ common API, etc

 Individual runners for the different runtime frameworks

Distributed Stream Processing

[https://flink.apache.org/news/
2019/02/13/unified-batch-

streaming-blink.html]

[T. Akidau et al.: The Dataflow
Model: A Practical Approach to

Balancing Correctness, Latency, and
Cost in Massive-Scale, Unbounded,

Out-of-Order Data Processing.
PVLDB 2015]

https://flink.apache.org/news/2019/02/13/unified-batch-streaming-blink.html

24

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Data Stream Mining

Selected Example Algorithms

25

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Overview Stream Mining

 Streaming Analysis Model

 Independent of actual storage model and processing system

 Unbounded stream of data item S = (s1, s2, …)

 Evaluate function f(S) as aggregate over stream or window of stream

 Standing vs ad-hoc queries

 Recap: Classification of Aggregates

 Additive aggregation functions (SUM, COUNT)

 Semi-additive aggregation functions (MIN, MAX)

 Additively computable aggregation functions (AVG, STDDEV, VAR)

 Aggregation functions (MEDIAN, QUANTILES) approximations

 Selected Algorithms

 Approximate # Distinct Items (e.g., KMV)

 Approximate Heavy Hitters (e.g. CountMin-Sketch)

Data Stream Mining

02 Data Warehousing,
ETL, and SQL/OLAP

26

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Number of Distinct Items

 Problem

 Estimate # distinct items in a dataset / data stream w/ limited memory

 Support for set operations (union, intersect, difference)

 K-Minimum Values (KMV)

 Hash values 𝑑𝑖 to ℎ𝑖 ∈ [0,𝑀]

 Domain 𝑀 = 𝑂(𝐷2) to avoid
collisions  𝐎(𝒌 𝒍𝒐𝒈 𝑫) space

 Store k minimum hash values
(e.g., via priority queue) in
normalized form ℎ𝑖 ∈ [0,1]

 Basic estimator:

 Unbiased estimator:

Data Stream Mining

0 1

Duplicates yield
same hash!

U(k=4)=0.24

෡𝐷𝑘
𝐵𝐸 = 𝑘/𝑈(𝑘)

෡𝐷𝑘
𝑈𝐵 = (𝑘 − 1)/𝑈(𝑘)

Example:
16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis
Sismanis, Rainer Gemulla: On synopses for distinct-value
estimation under multiset operations. SIGMOD 2007]

27

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Stream Summarization

 Problem

 Summarize stream in sketch/synopsis w/ limited memory

 Finding quantiles, frequent items (heavy hitters), etc

 Count-Min (CM) Sketch

 Two-dimensional count array
of width w and depth d

 d hash functions map
{1 … n}  {1 … w}

 Update (si,ci): compute
d hashes for si and increase
counts of all locations

 Point query (si): compute
d hashes for si and estimate
frequency as min(count[j,hj(si)])

Data Stream Mining

Unlikely similar
hash collisions

6 2 1

1 3 5

3 4 1 1

1 2 1 5

7 1 1

h1

h2

h3

h4

hd

[Graham Cormode, S. Muthukrishnan:
An Improved Data Stream Summary:

The Count-Min Sketch and Its
Applications. LATIN 2004]

28

706.520 Data Integration and Large-Scale Analysis – 11 Distributed Stream Processing
Shafaq Siddiqi, Graz University of Technology, WS 2022/23

Summary and Q&A

 Data Stream Processing

 Distributed Stream Processing

 Data Stream Mining

 Next Lectures

 13 Distributed Machine Learning Systems [Jan 27]

 Written Exam [Feb 10, 2:30 pm]

