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Landscape of ML Systems
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Landscape of ML Systems ﬂ'l;lan_

What is an ML System?

Classification
Regression

ML Applications Machine
. : Recommenders
(entire KDD/DS Learning Clusterin
lifecycle) (ML) 5

Dim Reduction
; Neural Networks

e N T |

Rapidly Evolving
Runtime Techniques

(Execution, Data Access) Compilation

Techniques

Data Accelerators
Management

HW
Architecture

Operating
Systems



Landscape of ML Systems ﬂ-gryz.

The Data Science Lifecycle Data-centric View:

Application perspective
aka KDD Process PP PErsp

Workload perspective
aka CRISP-DM Data System perspective

Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW ML/DevOps
Engineer Engineer
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Landscape of ML Systems ﬂ-grl,-;!.

Driving Factors for ML

[Credit: Andrew Ng’14]
= Improved

New Al methods
(deep learning)

= Success across data and application domains
(e.g., health care, finance, transport, production)

@
Q
c
]
£
IS
(=]
=
jol
o

= More complex models which leverage large data

Amount of data

= Availability of Collections Feedback Loop
= |ncreasing automation and monitoring =» data Data
(simplified by cloud computing & services) /

= Feedback loops, data programming/augmentation Usage Model
. Advancements
= Higher performance of hardware and infrastructure (cloud)
= QOpen-source large-scale computation frameworks,

ML systems, and vendor-provides libraries _ gl
y "

A
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Landscape of ML Systems ﬂ-grlan.

Stack of ML Systems Deployment &

Validation & Scoring
Debugging

Training

Hyper-parameter

Tuning Supervised, unsupervised, RL

ML Apps & Algorithms linear algebra, libs, AutoML

Model and Feature

Selection Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Data Programming &
Augmentation

Fault Tolerance

Local, distributed, cloud

Execution Strategies (data, task, parameter server)

Data Preparation
(e.g., one-hot, binning) Dense & sparse tensor/matrix;

compress, partition, cache

Data Representations

Data Integration & Data CPUs, NUMA, GPUs, FPGAs,
Cleaning HW & Infrastructure ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
=» Specialization & Heterogeneity



Landscape of ML Systems

Accelerators (GPUs, FPGAs, ASICs) 2ies

Lang
Faults

| Apps_|
| lang |
| Faults |
| Exec
| Data_|

Memory- vs Compute-intensive 4

= CPU: dense/sparse, large mem, high

Data
mem-bandwidth, moderate compute Ops Roofline

= GPU: dense, small mem, slow PClI, Analysis
very high mem-bandwidth / compute

[
»

Operational Intensity

Graphics Processing Units (GPUs)
= Extensively used for deep learning training and scoring
= NVIDIA Volta: “tensor cores” for 4x4 mm —> 64 2B FMA instruction
= Field-Programmable Gate Arrays (FPGAS)
= Customizable HW accelerators for prefiltering, compression, DL
= Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)
= Spectrum of chips: DL accelerators to computer vision
= Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP
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Landscape of ML Systems

Data Representation fpps
ang

Faults

| Apps_|
| lang |
| Faults |
_Exec
| Data |

= ML- vs DL-centric Systems

Exec
= [VIL: dense and sparse matrices or tensors, different sparse Data
formats (CSR, CSC, COO0), frames (heterogeneous)
= DL: mostly dense tensors, vec(Berlin) - vec(Germany)
embeddings for NLP, graphs + vec(France) = vec(Paris)

= Data-Parallel Operations for ML

nnnnn

= Distributed matrices: RDD<MatrixIndexes,MatrixBlock> Nodel Node2
= Data properties: distributed caching,
partitioning, compression - -
= Lossy Compression = Acc/Perf-Tradeoff [Credit: Song Han"16]

= Sparsification (reduce non-zero values)
= Quantization (reduce value domain), learned
= New data types: Intel Flexpoint (mantissa, exp)
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Landscape of ML Systems 1G-rlan.

Execution Strategies

= Batch Algorithms: Data and Task Parallel M
= Data-parallel operations Spark’
. . 2 MAHOUT
= Different physical operators Apache
SystemML"™

= Mini-Batch Algorithms: Parameter Server

Parameter Servers

—— = = = ———

= Data-parallel and model-parallel PS i i
= Update strategies (e.g., PYTORCH W‘ e :
async, sync, backup) D xnet Ll Taw i T i T
= Data partitioning strategies Ten;!'r — (wi [we] | | [wa][we]
» Federated ML (trend 2018) CNTK () (wa | | [ws] (4]
= Lots of PS Decisions =2 Acc/Perf-Tradeoff Workers
= Configurations (#workers, batch size/param schedules, update type/freq)

= Transfer optimizations: lossy compression, sparsification, residual
accumulation, layer-wise all-reduce, gradient clipping, momentum corrections
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Landscape of ML Systems

Fault Tolerance & Resilience

= Resilience Problem Lo 1

—&—  P(err)=0.01
08 = P(em)=0001

= |ncreasing error rates at scale == piem-00001
(soft/hard mem/disk/net errors)

P(Job Failure)

= Robustness for preemption 02

= Need cost-effective resilience 00 14 . : ; |

1 10 100 1000 10000
# Tasks

= Fault Tolerance in Large-Scale Computation
= Block replication (min=1, max=3) in distributed file systems
= ECC; checksums for blocks, broadcast, shuffle
= Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
= Lineage-based recomputation for recovery in Spark

= VIL-specific Schemes (exploit app characteristics)
= Estimate contribution from lost partition to avoid strugglers
= Example: user-defined “compensation” functions
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Landscape of ML Systems 1G-rlan.

Language Abstractions -
ang
it -
= Optimization Scope y UR
: Xec
= #1 Eager Interpretation (debugging, no opt) PYTORCH
= #2 Lazy expression evaI.ua.tiop + @ MAHOUT
(some opt, avoid materialization) Tensor ]
o . Apache Apache
= #3P lation (full opt, difficult ™
rogram compilation (full opt, difficult) SystemML™ ¢ 0 11DS

= Optimization Objective
= Most common: min time s.t. memory constraints
= Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

= Trend: Fusion and Code Generation
Sparsity-Exploiting Operator

= Custom fused operations sum

= Examples: SystemDS, '
Weld, Taco, Julia, . © sum + eps
TF XLA, TVM, TensorRT o
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Landscape of ML Systems

Grazm

ML Applications

= ML Algorithms (cost/benefit — time vs acc)
= Unsupervised/supervised; batch/mini-batch; first/second-order ML
= Mini-batch DL: variety of NN architectures and SGD optimizers

= Specialized Apps: Video Analytics
in NoScope (time vs acc)

= Difference detectors / specialized ; ZA : 2N
models for “short-circuit evaluation” [Credit: Daniel Kang‘17]

= AutoML (time vs acc)
* Not algorithms but tasks (e.g., doClassify (X, y) + search space)
= Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
= AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

= Data Programming and Augmentation (acc?) Credit

" Generate noisy labels for pre-training Jonathan
Tremblay‘18] ==

= Exploit expert rules, simulation models,

Apps
Lang
Faults
Exec
Data

| Apps_|
| lang |
| Faults |
| Exec
| Data |

rotations/shifting, and labeling IDEs (Software 2.0)
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Landscape of ML Systems

Ty

Landscape of ML Systems

@J\AAHOUT

julia

PYTHORCH L

#1 Language Abstraction

Linear Algebra
Programs

Tensor

Computation Graphs

O Wspoﬁ’g &' Algorithm Libraries
cUDNN = Operator Libraries
_— . Squlzz Collections
%»% JfUIl 2 Graphs
o @ MAHOUT Spor‘l’g Matrices
_|uI|a 3$Numpy Tensors
Sﬁ“b“rk Ten.sf Frames

#4 Data Types

Apache
SystemML™

#2 Execution Strategies

Task-Parallel
Constructs

Data-Parallel
Operations

Local (single node)

Distributed

#3 Distribution

IParameter Server .
. (Modell-Parallel) '

¥ Microsoft

CNTK

LA ot

Tensor'

: % CNTK
Tensor

2 MAHOUT



Distributed Parameter Servers
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Distributed Parameter Servers ﬁ-IG-rlaJZI

Background: Mini-batch ML Algorithms

~ EER - w
~ EER -

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the

next model update (in epochs or w/ sampling)

= For large and highly redundant training sets Epoch

= Applies to almost all iterative, model-based
ML algorithms (LDA, reg., class., factor., DNN)

= Stochastic Gradient Descent (SGD)

= Statistical vs Hardware Efficiency (batch size)
= Statistical efficiency: # accessed data points to achieve certain accuracy

= Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at different levels)

= Beware higher variance / class skew for too small batches!

=» Training Mini-batch ML algorithms sequentially is hard to scale
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Distributed Parameter Servers

Ty

Background: Mini-batch DNN Training (LeNet)

# Initialize W1-W4, bl-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch
y_batch

X[((i-1) * batch_size) %% N + 1:
Y[((i-1) * batch_size) %% N + 1:

## layer 1: convl -> relul -> pooll

## layer 2: conv2 -> relu2 -> pool2

## layer 3: affine3 -> relu3 -> dropout
## layer 4: affined4 -> softmax

outad = affine::forward(outd3, W4, b4)
probs = softmax::forward(outad)

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner: Gradient-
Based Learning Applied to Document
Recognition, Proc of the IEEE 1998]

min(N, beg + batch_size - 1),]
min(N, beg + batch_size - 1),]

NN Forward
Pass

## layer 4: affined4 <- softmax 7

doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dwW4, db4] = affine::backward(doutad4, outr3, W4, b4) P

## layer 3: affine3 <- relu3 <- dropout i ass

## layer 2: conv2 <- relu2 <- pool2 — Gradients
## layer 1: convl <- relul <- pooll ]

# Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7 Model
[W4, vW4] = sgd_nesterov::update(W4, dW4, 1lr, mu, vW4) L

[b4, vb4a] = sgd _nesterov::update(b4, db4, 1lr, mu, vb4) Updates




Distributed Parameter Servers ﬁ-IG-rlan-

Overview Data-Parallel Parameter Servers

= System M Parameter Servers
Architecture :
= M Parameter |
Servers ) I W.. Model
= N Workers WLl T i T T AW .. Gradient
_ AW
= QOptional
Coordinator [Wl] {Wz] [Wl} [Wz‘ [WlJ [Wz]
w (wa | | (ws] (wa | | (3] [
= Key Techniques N Workers
= Data partitioning D = workers Di (e.g., disjoint, reshuffling)
= Updated strategies (e.g., synchronous, asynchronous)
= Batch size strategies (small/large batches, hybrid methods)
706.520 Data Integration and Large-Scale Analysis — 12 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers

Ty

History of Parameter Servers

= 15t Gen: Key/Value

= Distributed key-value store for
parameter exchange and synchronization

= Relatively high overhead

= 2"d Gen: Classic Parameter Servers
= Parameters as dense/sparse matrices
= Different update/consistency strategies
= Flexible configuration and fault tolerance

= 3rd Gen: Parameter Servers w/
improved data communication

= Prefetching and range-based pull/push

= Lossy or lossless compression w/ compensations

= Examples

= TensorFlow, MXNet, PyTorch, CNTK, Petuum

Accelerating Distributed Machine

[Alexander J. Smola, Shravan
M. Narayanamurthy: An
Architecture for Parallel Topic
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]

[Mu Li et al: Scaling Distributed
Machine Learning with the
Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, [——
Lele Yu: Heterogeneity-aware
Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:

Learning with Data Sketches.
SIGMOD 2018]




Distributed Parameter Servers ﬁ-IG-rlan-

Basic Worker Algorithm (batch)

for( i in 1:epochs ) {
for( j in 1l:iterations ) {
params = pullModel(); # W1-W4, bl-b4 1lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]
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Distributed Parameter Servers ﬁ-IG-rlan-

Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {
for( j in 1l:iterations ) {

}

}

nfetch batches require
local gradient accrual and
local model update

if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch =0 ) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

} [Jeffrey Dean et al.: Large Scale
step++; Distributed Deep Networks.
NIPS 2012]
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Distributed Parameter Servers ﬂ-l;lan.

Update Strategies

" Bulk Synchronous
Parallel (BSP)

= Update model w/

accrued gradients

= Barrier for N workers

" Asynchronous but, stale
Parallel (ASP) model
" Update model updates

for each gradient

= No barrier

" Synchronous w/
Backup Workers

* Update model w/
occrued gradients

= Barrier for N of
N+b workers

[Martin Abadi et al: TensorFlow: A System for
Large-Scale Machine Learning. OSDI 2016]




Q&A and Exam Preparation

Selected Example Questions
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62/120

Ty

Multiple choice question (40/100)

= Given the dataset identify the type of missingness.
Missing Completely at Random (MCAR)

Missing at Random (MAR)

Missing Not at Random (MNAR)

. All of above

a.

b
C.
d

2000
5000
2300
?
?

2000

> O 0O I O >
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Q&A and Exam Preparation ﬁ-IG-rlan-

Data Warehousing

= Given the following normalized schema, create a Star Schema
that covers all information. Annotate the key concepts. [15/100 points]

Parts
PartKey | Order |
Name m OrderKey — QOrderKey / CustKey
Brand PartKey - PartKey CustKey Name
SuppKey SuppKey Totalprice Address
| Supplier | / Quantity Date Mktsegmnt
SuppKey Price
Name Tax
Address
artKe Fact Table CustKey
Name  Lineitem | / Name
Brand CustKey Address
DateKey Mktsegmnt Dimension
artKey Date | Tables
Descriptive Name DateKey
Quantlty .
Attributes Address Price Day Categoncal
Measures Tax e Attributes

Year



Q&A and Exam Preparation ﬂ-grlan.

Message-oriented Middleware

= Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once
and Exactly-Once, and indicate which of them require persistent storage
before sending. [6/100 points]

“Name | esspin | Storage.

At-Most-Once Send and forget, never sent message twice (even on No
failures)
At-Least-Once Store and forward, replay stream from Yes

(acknowledged) checkpoint

Exactly-Once Store and forward, replay stream from Yes
(acknowledged) checkpoint, transactional delivery

706.520 Data Integration and Large-Scale Analysis — 12 Distributed Machine Learning Systems .ISDS
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Q&A and Exam Preparation ﬂ-gryz.

Schema Matching / Entity Linking

= Explain the phases of a typical Entity Resolution Pipeline with example
techniques for the individual phases. [20/100 points]

Prepare Blocking/
Data Sorting

ooz
Ao
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Q&A and Exam Preparation ﬂ-grl::!.

Data Parallel Computation / Stream Mining

Assume three nodes with CPU and memory capacity N1 (32 cores, 64 GB),
N2 (16 cores, 64 GB), N3 (64 cores, 128 GB) and a stream of resource
requests R1. .. R7. Schedule these requests to available resources (assign
requests to nodes) in order to maximize the number of fulfilled requests.
(4 points)

R1: (30 cores, 8 GB)

PHIRR M (N1 (32/64)] N2 (16/64) | N3 (64/128

R3: (8 cores, 64 GB) requests R6 R2, R4  R1,R3,R5, R7

R4: (10 cores, 32 GB) utilization  16/64 16/64 62/120
R5: (8 cores, 32 GB)

R6: (16 cores, 64 GB)
R7: (16 cores, 16 GB)
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Q&A and Exam Preparation ﬁ-IG-rlan-

Stream Processing

= Describe the concept of Continuous Queries and a Basic System
Infrastructure to process them over incoming data streams. [8/100 points]

= Deployed Data flow graphs [

= Nodes: asynchronous ops (w/ state)
(e.g., separate threads / queues)

S

= Edges: data dependencies
(tuple/message streams)

= Push model: data production \
—| —>
controlled by source

| Archive
= Given the continuous query _,n_, _,n_, _,n_,

A-B-C, what are the resulting
. .. . 1ms 5ms 2ms
perf characteristics? [4 points]

= Max throughput 1/max(C(op;)) = 1/5 tuples/ms = 200 tuples/s
sum(C(op;)) = 1ms + 5ms + 2ms = 8ms

State

= Min tuple latency
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Q&A and Exam Preparation ﬂ-IG-rlan-

Stream Processing, cont.

Describe the three classes of techniques for handling overload situations
in continuous queries? [6/100 points]

#1 Back Pressure
= Graceful handling of PMM&
3ms 9ms

overload w/o data loss 2ms
= Slow down sources Self-adjusting operator scheduling
= E.g., blocking queues Pipeline runs at rate of slowest op

#2 Load Shedding
= #1 Random-sampling-based load shedding
= #2 Relevance-based load shedding
= #3 Summary-based load shedding (synopses)

#3 Distributed Stream Processing (see last part)
= Data flow partitioning (distribute the query)
= Key range partitioning (distribute the data stream
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Summary and Q&A

Landscape of ML Systems T h a n ks

Distributed Parameter Servers

Q&A and Exam Preparation (please, participate in the
course evaluation)

= #2 Course Evaluation and Exam
= Evaluation period: Jan 15 — Feb 15 (1/98)
= Exam date: Feb 10
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