

SCIENCE PASSION TECHNOLOGY

Data Integration and Large Scale Analysis 01 Introduction and Overview

Shafaq Siddiqi

Graz University of Technology, Austria

Announcements/Org

- #1 Video Recording
 - Link in TUbe & TeachCenter
 - Optional attendance
 - Hybrid, in-person but video-recorded lectures
 - HS i5 and Webex: https://tugraz.webex.com/meet/shafaq.siddiqi

Agenda

- Course Organization
- Course Motivation and Goals
- Course Outline and Projects

4

About Me

- **09/2019 TU Graz**, Austria
 - Teaching Assistant, TU Graz
 - Institute of Interactive Systems and Data Science, CSBME (ML systems internals, end-to-end data science lifecycle) https://github.com/apache/systemds

2017-2019 Sukkur IBA University

- Lecturer (Computer Science)
- Teaching and supervising FYPs in Bachelor programs
- 2020 PhD Student TU Graz, Austria
 - Data preprocessing for Heterogeneous Large Scale Data
 - Generation and Optimization of Data Cleaning Pipelines

706.520 Data Integration and Large-Scale Analysis – 01 Introduction and Overview

Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Data Management

group

Course Organization

Basic Course Organization

Staff

Lecturer: M.Sc. Shafaq Siddiqi, ISDS

Language

- Lectures and slides: English
- Communication and examination: English

Course Format

- VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
- Weekly lectures (Fri 3pm, including Q&A), attendance optional
- Mandatory exercises or programming project (2 ECTS)
- Recommended papers for additional reading on your own

Prerequisites

- Preferred: course Data Management / Databases is very good start
- Sufficient: basic understanding of SQL / RA (or willingness to fill gaps)
- Basic programming skills (Python, R, Java, C++)

Course Logistics

Website

7

- https://shafaq-siddiqi.github.io./dia2023.html
- All course material (lecture slides) and dates
- Video Recording Lectures (TUbe)

- Communication
 - Informal language (first name is fine)
 - Please, immediate feedback (unclear content, missing background)
 - Newsgroup: N/A email is fine, TeachCenter forum for discussions
 - Office hours: by appointment or after lecture
- Exam
 - Completed exercises or project
 - Final written exam (oral exam if <25 students take the exam and for Erasmus students)
 - Grading (30% project/exercises completion, 70% exam)

Course Logistics, cont.

Course Applicability

- Bachelor programs computer science (CS), as well as software engineering and management (SEM)
- Master programs computer science (CS), as well as software engineering and management (SEM)
 - Catalog Data Science: compulsory course in major/minor
- Free subject course in any other study program or university

Course Motivation and Goals

Data Sources and Heterogeneity

- Terminology
 - Integration (Latin integer = whole): consolidation of data objects / sources
 - Homogeneity (Greek homo/homoios = same): similarity
 - Heterogeneity: dissimilarity, different representation / meaning

Heterogeneous IT Infrastructure

- Common enterprise IT infrastructure contains >100s of heterogeneous and distributed systems and applications
- E.g., health care data management: 20 120 systems

Multi-Modal Data (example health care)

- Structured patient data, patient records incl. prescribed drugs
- Knowledge base drug APIs (active pharmaceutical ingredients) + interactions
- Doctor notes (text), diagnostic codes, outcomes
- Radiology images (e.g., MRI scans), patient videos
- Time series (e.g., EEG, ECoG, heart rate, blood pressure)

The Data Science Lifecycle

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. **AI Magazine 17(3) (1996)**]

The Data Science Lifecycle, cont.

CRISP-DM

- CRoss-Industry
 Standard Process for
 Data Mining
- Additional focus on business understanding and deployment

[https://statistikdresden.de/archives/1128]

13

Data-centric View:

The Data Science Lifecycle, cont.

The 80% Argument

- **Data Sourcing Effort**
 - Data scientists spend 80-90% time on finding, integrating, cleaning datasets

[Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)

 A REAL PROPERTY AND AND AN A REAL PROPERTY.
Internet And Internet
The local sector was not been a

Technical Debts in ML Systems

- Glue code, pipeline jungles, dead code paths
- Plain-old-data types (arrays), multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

Horizontal Integration (e.g., EAI)

706.520 Data Integration and Large-Scale Analysis – 01 Introduction and Overview Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Course Goals

- #1 Major data integration architectures
- #2 Key techniques for data integration and cleaning
- #3 Methods for large-scale data storage and analysis

Course Outline and Projects

Part A: Data Integration and Preparation

Data Integration Architectures

- 01 Introduction and Overview [Oct 06]
- 02 Data Warehousing, ETL, and SQL/OLAP [Oct 13]
- 03 Message-oriented Middleware, EAI, and Replication [Oct 20]

Key Integration Techniques

- 04 Schema Matching and Mapping [Oct 27]
- 05 Entity Linking and Deduplication [Nov 03]
- 06 Data Cleaning and Data Fusion [Nov 10]

Part B: Large-Scale Data Management & Analysis

Cloud Computing

- O7 Cloud Computing Foundations [Nov 17]
- 08 Cloud Resource Management and Scheduling [Nov 24]
- 09 Distributed Data Storage [Dec 01]

Large-Scale Data Analysis

- **10 Distributed, Data-Parallel Computation** [Dec 15]
- **11 Distributed Stream Processing** [Jan 12]
- 12 Distributed Machine Learning Systems [Jan 19]

Overview Projects or Exercises

- Team
 - 1-3 person teams (w/ clearly separated responsibilities)
- Objectives
 - Non-trivial programming project in DIA context (2 ECTS → 50 hours)
 - Exercise: Data engineering and ML pipeline
 - Data cleaning and integration of multi-modal data sources
 - ML model training and evaluation
 - Optional: Open source contribution to Apache SystemDS <u>https://github.com/apache/systemds</u> (from HW to high-level scripting)

Timeline

- Oct 20: Exercise description
- Jan 12: Final project/exercise deadline

Summary and Q&A

- Course Goals
 - #1 Major data integration architectures
 - #2 Key techniques for data integration and cleaning
 - #3 Methods for large-scale data storage and analysis

- Next Lectures
 - O2 Data Warehousing, ETL, and SQL/OLAP [Oct 13]
 - 03 Message-oriented Middleware, EAI, and Replication [Oct 20]

