

SCIENCE PASSION TECHNOLOGY

Data Integration and Large Scale Analysis 03 Replication, MoM, and EAI

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Oct 20, 2023

Agenda

- Overview Programming Projects & Exercises
- Motivation and Terminology
- Distributed TX & Replication Techniques
- Asynchronous Messaging
- Message-oriented Integration Platforms

Overview Programming Projects & Exercises

Overview Projects or Exercises

- Team
 - 1-3 person teams (w/ clearly separated responsibilities)
 - Exercise description on the website
 - Open-source contribution to be confirmed individually via email

ID	Name	Address	City	Туре
a1	arnie mortons of chicago	435 s. la cienega blv.	los angeles	american
a2	arts delicatessen	12224 ventura blvd.	studio city	american
a3	fenix	8358 sunset blvd. west	hollywood	american
a4	restaurant katsu	1972 n. hillhurst ave.	los angeles	asian

Table A: Restaurants in Data Source A

ID	Name	Address	City	Туре
b1	arnie mortons of chicago	435 s. la cienega blvd.	los angeles	steakhouses
b2	arts deli	12224 ventura blvd.	studio city	delis
b3	fenix at the argyle	8358 sunset blvd. w.	hollywood	french (new)
b4	katsu	1972 hillhurst ave.	los feliz	japanese

Table B: Restaurants in Data Source B

Pei Wang et al. ICDE 2021

706.520 Data Integration and Large-Scale Analysis – 03 Replication, MoM, and EAI Shafaq Siddiqi, Graz University of Technology, WS 23/24

Exercise

[Task 01]: Entity Matching Pipeline

- Prepare data (apply necessary cleaning/transformations and features)
- Implement a blocking scheme
- Identify and delete the duplicates with in each block
- Find the perfect matches and compare them against the ground truths and report accuracy of your pipeline
- Create a readme to reproduce the results

[Task 02]: Create an ML model for Entity Matching

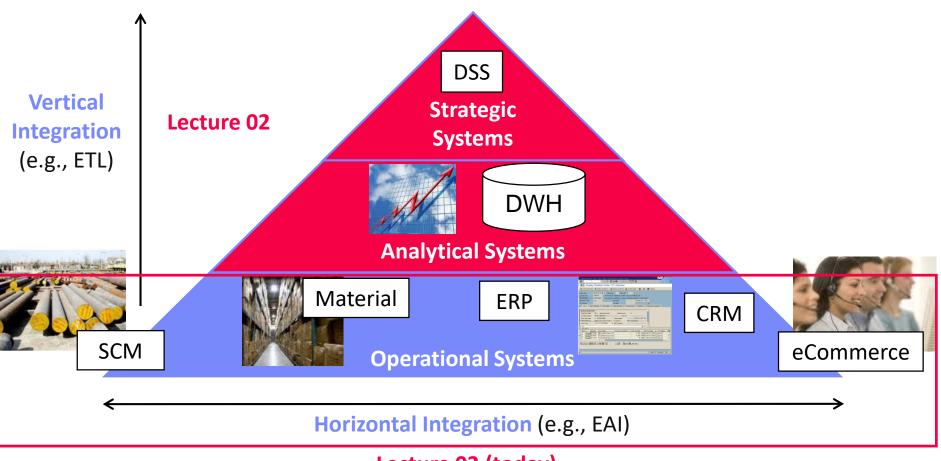
- Train a machine learning classifier on labeled data.
- Try different hyper-parameters to improve validation accuracy and report cross validation accuracy for k=3.
- Predict the instances in PredictX.csv and report accuracy using goldY.csv
- Create a readme to reproduce the results

Exercise

[Task 03]: Apply data cleaning

- Download the yelp_err.csv file (where errors are introduced randomly) apply data cleaning primitives to fix the quality of data and report the accuracy using the original Yelp dataset.
- Report the number of corrupt instances, type of errors in each tuple, and number of fixed instances and error detection and correction techniques applied.
- Submission Deadline: January 12, 2024

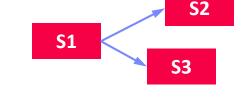
Motivation and Terminology


Replication, MoM, and EAI

8

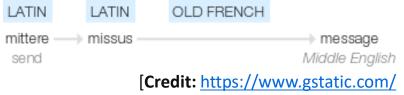
Recap: Information System Pyramid

Lecture 03 (today)



Messaging

- Def: Message
 - Piece of information in certain structure
 - Send from source (transmitter) over channel to destination (receiver)
 - Syntax: different message formats (binary, text, XML, JSON, Protobuf)
 - Semantic: different domain-specific message schemas (aka data models)


Synchronous Messaging

- Strict consistency requirements
- Overhead for distributed transactions via 2PC
- Low local autonomy, usually data-driven
- Asynchronous Messaging
 - Loose coupling, eventual consistency requirements
 - Batching for efficient replication and updates
 - Latency of update propagation

onebox/dictionary/etymology]

Types of Data Formats

- General-Purpose Formats
 - CLI/API access to DBs, KV-stores, doc-stores, time series DBs, etc
 - CSV (comma separated values)
 - JSON (javascript object notation), XML, Protobuf

Sparse Matrix Formats

- Matrix market: text IJV (row, col, value)
- Libsvm: text compressed sparse rows
- Scientific formats: NetCDF, HDF5
- Large-Scale Data Format
 - ORC, Parquet (column-oriented file formats)
 - Arrow (cross-platform columnar in-memory data)
- Domain-specific Formats: often binary, structured text, XML

9	%%MatrixMarket matrix coordinate real general
9	%
5	% 0 or more comment lines
5	%
	5 5 8
	1 1 1.000e+00
	2 2 1.050e+01
3	3 3 1.500e-02
1	1 4 6.000e+00
4	4 2 2.505e+02
4	4 4 -2.800e+02
4	4 5 3.332e+01
	5 5 1.200e+01

Example Domain-specific Message Formats

Finance: SWIFT

- Society for Worldwide Interbank Financial Telecommunication
- >10,000 orgs (banks, stock exchanges, brokers and traders)
- Network and message formats for financial messaging
- MT and MX (XML, ISO 20022) messages
- Health Care: HL/7, DICOM
 - Health Level 7 (HL7) messages for clinical and admin data exchange
 → v2.x structured text msgs, v3 XML-based msgs
 - Digital Imaging and Communications in Medicine (DICOM)

Automotive: ATF, MDF

- Association for Standardisation of Automation and Measuring Systems (ASAM)
- E.g., Open Transport Data Format (ATF), Measurement Data Format (MDF), calibrations (CDF), auto-lead XML (ADF), open platform communications (OPC)
- Note: Sometimes Large-scale analytics over histories of messages (e.g., health care analytics, fraud detection, money laundering)

TU Graz

Types of Message-Oriented Middleware

- #1 Distributed TXs & Replication
- #2 Message Queueing
 - Persistent message queues with well-defined delivery semantics
 - Loose coupling of connected systems or services (e.g., availability)

#3 Publish Subscribe

- Large number of subscribers to messages of certain topics/predicates
- Published messages forwarded to qualifying subscriptions

#4 Integration Platforms

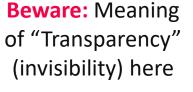
- Inbound/outbound adapters for external systems
- Sync and async messaging, message transformations, enrichment

Distributed TX & Replication Techniques

0‴

DB₂

DB,


Distributed Database Systems

Distributed DBS

- Distributed database: Virtual (logical) database that appears like a local database but consists of multiple physical databases
- Multiple local DBMS, components for global query processing
- Terminology: virtual DBS (homogeneous), federated DBS (heterogeneous)

Challenges

- Tradeoffs: Transparency autonomy, consistency efficiency/fault tolerance
- #1 Global view and query language → schema architecture
- #2 Distribution transparency → global catalog
- #3 Distribution of data → data partitioning
- #4 Global queries \rightarrow distributed join operators, etc
- #5 Concurrent transactions → 2PC
- #6 Consistency of copies → replication

Global Q DB₁

0'

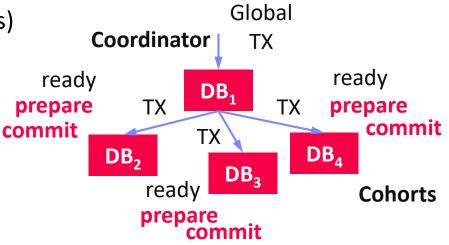
DB₂

15

ISDS

Two-Phase Commit (2PC)

Recap: Database Transaction


- A transaction (TX) is a series of steps that brings a database from a consistent state into another (not necessarily different) consistent state
- ACID properties (atomicity, consistency, isolation, durability)

Problems in Distributed DBS

- Node failures, and communication failures (e.g., network partitioning)
- Distributed TX processing to ensure consistent view (atomicity/durability)

Two-Phase Commit (via 4*(n-1) msgs)

- Phase 1 PREPARE: check for successful completion, logging
- Phase 2 COMMIT: commit/abort, release locks, and other cleanups
- What happens if nodes unavailable, or report errors on prepare

Two-Phase Commit (2PC), cont.

- Excursus: Wedding Analogy
 - Coordinator: marriage registrar
 - Phase 1: Ask for willingness
 - Phase 2: If all willing, declare marriage
- #1 Problem: Many Messages
 - 4(n-1) messages in successful case, otherwise additional msgs
- #2 Problem: Blocking Protocol
 - Local node PREPARE \rightarrow FAILED \rightarrow TX is guaranteed to be aborted
 - Local node PREPARE → READY → waiting for global response
 - Failure of coordinator+cohort, or participating coordinator → outcome unknown

Other Problems

- Atomicity in heterogeneous systems w/o XA
- Deadlock detection, optimistic concurrency control, etc

706.520 Data Integration and Large-Scale Analysis – 03 Replication, MoM, and EAI Shafaq Siddiqi, Graz University of Technology, WS 23/24

Note: APIs for automatic

vs programmatic 2PC

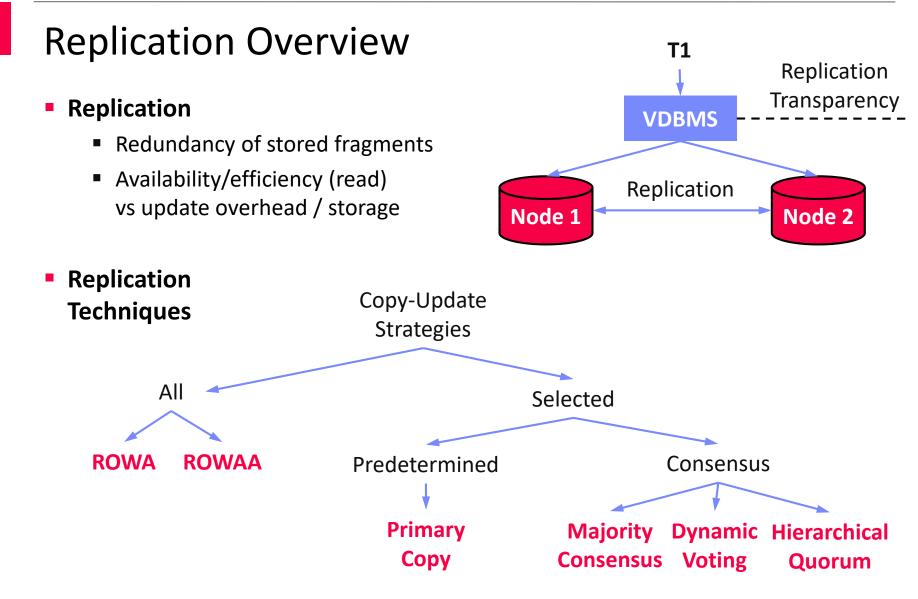
Extended Distributed Commit Protocols

2PC Improvements

- Hierarchical Commit: establish message tree from coordinator to local nodes
 parallelization of message handling over inner nodes
- Presumed Abort: assume abort if there are no commit log entries
 - → asynchronous logging of aborts, no ACK on abort

IPC (fewer messages)

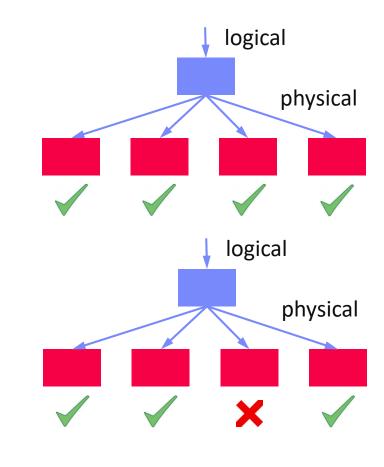
- Combine TX operations w/ PREPARE to reduce 2(n-1) messages
- Local nodes enter waiting state earlier


	Protocol	# Msgs
3PC (non-blocking)	1PC	2(n-1)
 a) CAN COMMIT? Yes/no 	2PC	4(n-1)
 b) PREPARE COMMIT? Ack c) COMMUT2 Ack 	3PC	6(n-1)

- c) COMMIT? Ack
- Cohorts can collectively decide on commit if at least one in PREPARE-COMMIT

18

Replication Techniques

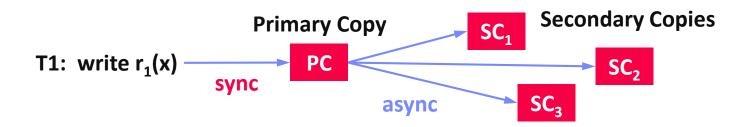

ROWA

- Read-One/Write-All
- Read: good performance/availability
- Write: high overhead and only successful if all available

ROWAA

- Read-One/Write-All-Available
- Relaxed availability requirement for write operations

"Update anywhere-anytime-anyway transactional replication has unstable behavior as the workload scales up: a ten-fold increase in nodes and traffic gives a thousand fold increase in deadlocks or reconciliations. Master copy replication (primary copy) schemes reduce this problem."


[Jim Gray, Pat Helland, Patrick E. O'Neil, Dennis Shasha: The Dangers of Replication and a Solution, SIGMOD 1996]

Replication Techniques, cont.

- Primary Copy
 - Update single primary copy synchronously
 - Asynchronous propagation of updates to other replicates, read from all

- Pro: Higher update performance, good locality, and availability
- Con: Potentially stale read on secondary copies (w/ and w/o locks)
- Load balancing: place PC of different objects on different nodes

Replication Techniques, cont.

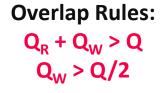
Consensus Protocols

- Basic idea: voting if read/write access is permissible (with regard to serializability)
- Each replicate has vote → all votes Q
- Read quorum Q_R and write quorum Q_W

#1 Majority Consensus

- Read requires Q_R > Q/2, lock all and read newest replica
- Write requires Q_w > Q/2, lock and update all

#2 Dynamic Quorums


■ Problem: network partitioning → retain vote for updated replica

#3 Hierarchical Quorums

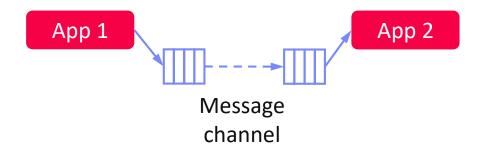
 Obtain majority of nodes in multiple levels of the tree **g**₁

g₂

g₃

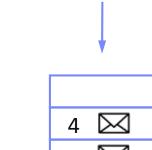
Asynchronous Messaging

Message Queueing


- Message
 - Atomic packet of data + meta data, wrapped as a message

Message Queue

- FIFO or priority queue of messages
- In-memory, sometimes with persistent storage backend and transactional semantics
- Internal IDs, receive time


Remote Message Queues

- Loose coupling of applications (no direct API calls, etc)
- Independent of HW and OS

2

Storage

Recap: Message Delivery Guarantees

#1 At Most Once

- "Send and forget", ensure data is never counted twice
- Might cause data loss on failures

#2 At Least Once

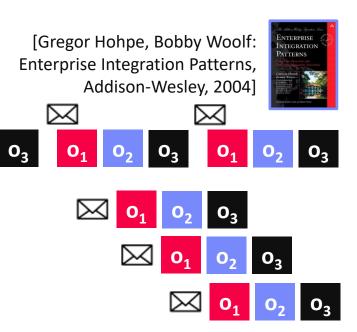
- "Store and forward" or acknowledgements from receiver, replay stream from a checkpoint on failures
- Might create incorrect state (processed multiple times)

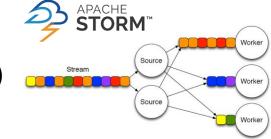
#3 Exactly Once

- "Store and forward" w/ guarantees regarding state updates and sent msgs
- Often via dedicated transaction mechanisms

Example Systems

- IBM MQSeries
 - Message-oriented middleware for async queue communication
 - Connections/objects: MQCONN, MQDISC, MQOPEN, MQCLOSE
 - Queue ops: MQCRTMH, MQPUT, MQGET, MQSET, MQINQ, MQSTAT
 - Transactions: MQBEGIN, MQBACK, MQCMIT
- JMS (Java Message Service)
 - J2EE API of messaging services in Java (messages, queues, sessions, etc)
 - JMS providers: e.g., IBM Websphere MQ, Apache ActiveMQ, RabbitMQ
- AWS Simple Queueing Service (SQS)
 - Message queueing service for loose coupling of micro services
 - Default queue: best effort order, at-least-once, high throughput
 - FIFO: guarantees FIFO order, and exactly-once

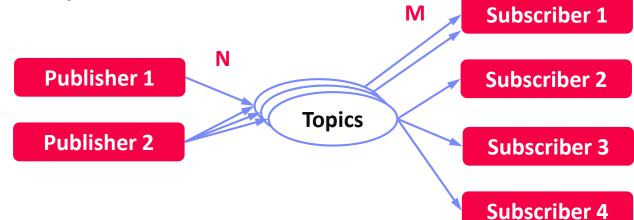



Parallel Message Processing

- #1 Pipeline Parallelism
 - "Pipes and filters": leverage pipeline parallelism of chains of operators
 - More complex w/ routing / control flow (possible via punctuations)

#2 Operator Parallelism

- Multi-threaded execution of multiple messages within one operator (pattern "competing consumers")
- Requires robustness against partial out-of-order, or resequencing
- #3 Key Range Partitioning
 - Explicit routing to independent pipelines (patterns "message router", "content-based router")
 - Ordering requirements only within each pipeline

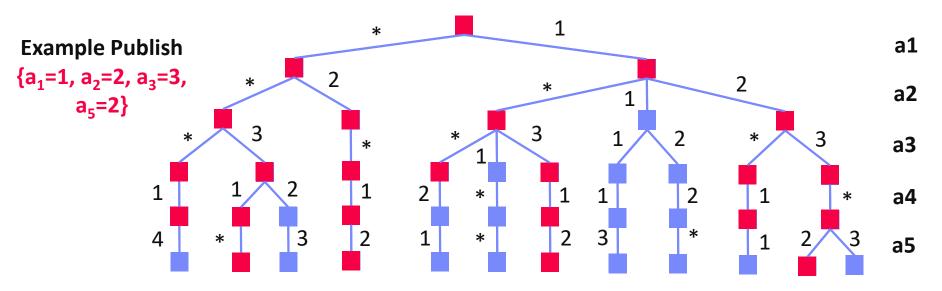

ISDS

Publish/Subscribe Architecture

Overview Pub/Sub

Key Characteristics

- Often imbalance between few publishers and many subscribers
- Topics: explicit or implicit (e.g., predicates) groups of messages to publish into or subscribe from
- Addition and deletion of subscribers rare compared to message load
- ECA (event condition action) evaluation model
- Often at-least-once guarantee

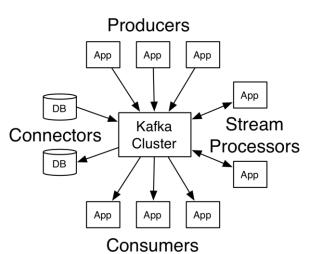

Publish/Subscribe Architecture, cont.

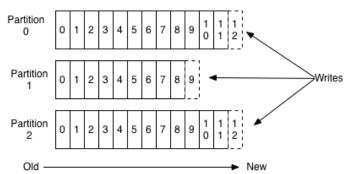
- Subscriber Filtering
 - Complex predicates of range filters, equi-predicates, and negation
 - Goal: Avoid naïve scan over all subscriber predicates / topics
- Matching Algorithm
 - Matching event against a set of subscriptions
 - Approach: sorting and parallel search tree

[Guruduth Banavar et al: An Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems. **ICDCS 1999**]

ISDS

706.520 Data Integration and Large-Scale Analysis – 03 Replication, MoM, and EAI Shafaq Siddiqi, Graz University of Technology, WS 23/24



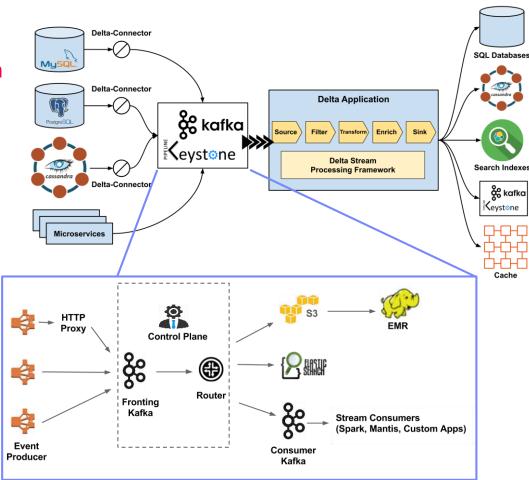


- **Overview System Architecture**
 - **Publish & Subscribe** system w/ partitioned topics
 - Storage of data streams in distributed, fault-tolerant cluster (replicated)
 - Configurable retention periods (e.g., days)
 - **APIs:** producer API, consumer API, streams API, Connector API

Topics

- Explicit categories w/ user-defined (semantic) partitioning
- Partitions are ordered, immutable sequences of records (log) w/ offsets
- Current offset per consumer stored

Anatomy of a Topic


Apache Kafka, cont.

[https://medium.com/netflix-techblog/deltaa-data-synchronization-and-enrichmentplatform-e82c36a79aee, Oct 15 2019]

- Netflix Delta
 - A Data Synchronization and Enrichment Platform
 - DSL and UDF APIs for custom filters and transformations

- Netflix Keystone (Kafka frontend)
 - ~500G events/day (5M events/s peak)
 - ~1.3PB/day

[https://medium.com/netflixtechblog/evolution-of-the-netflix-datapipeline-da246ca36905]

Message-oriented Integration Platforms

Middleware

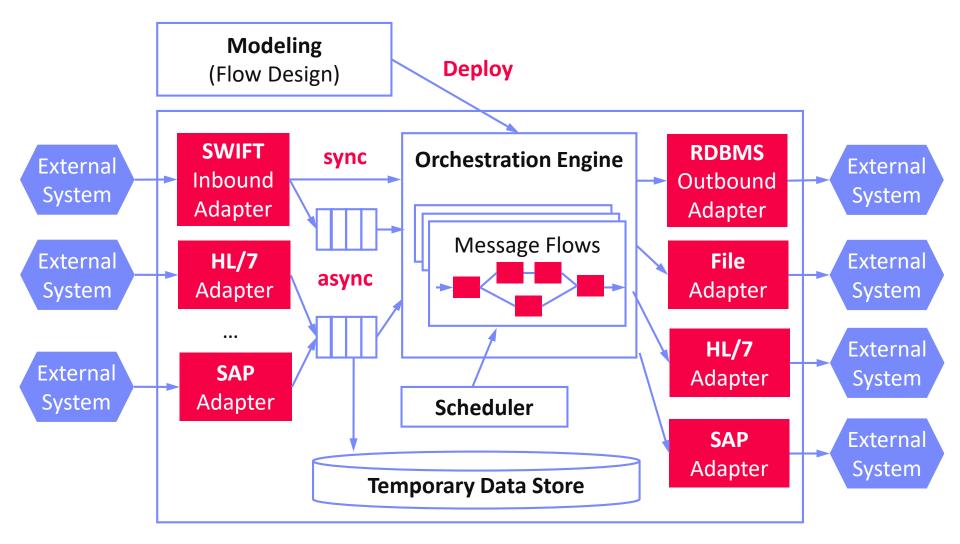
Overview

- Motivation
 - Integration of many applications and systems via common (information resources) IR
 - Beware: syntactic vs semantic data models

Evolving Names

- Enterprise Application Integration (EAI)
- Enterprise Service Bus (ESB)
- Message Broker

Example Systems


- IBM App Connect Enterprise (aka Integration Bus, aka Message Broker)
- MS Azure Integration Services + Service Bus (aka Biztalk Server)
- SAP Process Integration (aka Exchange Infrastructure)
- SQL AG TransConnect

33

Common System Architecture

Common System Architecture, cont.

#1 Synchronous Message Processing

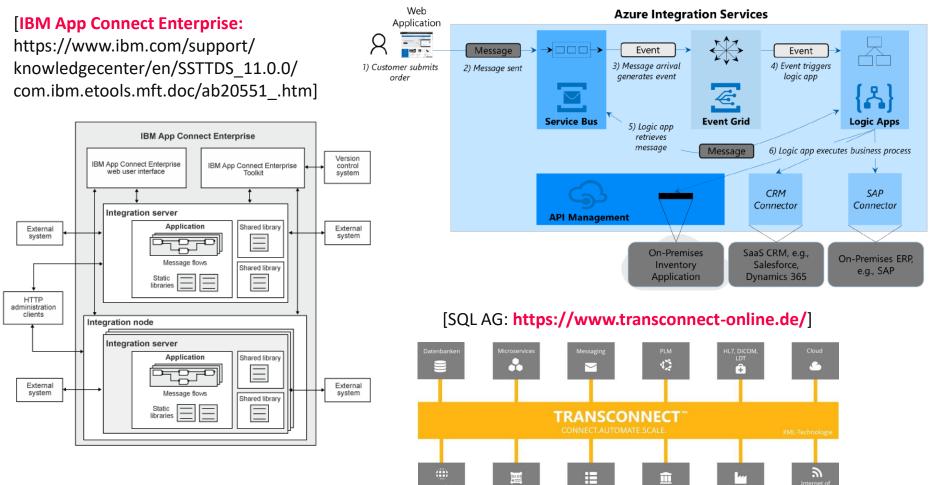
- Event: client input message
- Client system blocks until message flow executed to output messages delivered to target systems

#2 Asynchronous Message Processing

- Event: client input message from queue
- Client system blocks until input message stored in queue
- Asynchronous message flow processing and output message delivery
- Optional acknowledgement, when input message successfully processed

#3 Scheduled Processing

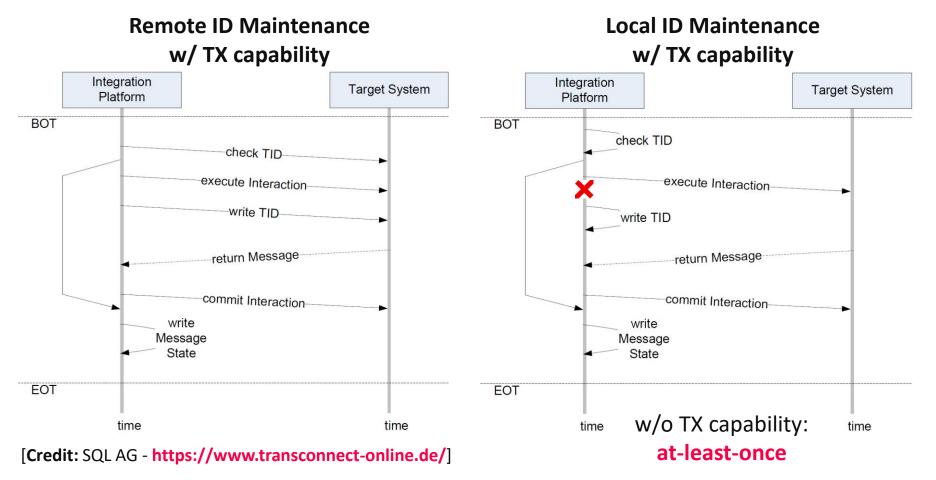
- Event: time-based scheduled message flows (cron jobs)
- Periodic data replication and loading (e.g., ETL use cases)



Commercial Systems

35

[https://azure.microsoft.com/mediahandler/files/ resourcefiles/azure-integration-services/ Azure-Integration-Services-Whitepaper-v1-0.pdf]


706.520 Data Integration and Large-Scale Analysis – 03 Replication, MoM, and EAI Shafaq Siddiqi, Graz University of Technology, WS 23/24

Message Delivery Guarantees, cont.

Example Exactly-Once

"Databases"

"AMI S"

Recap: XML (Extensible Markup Language)

XML Data Model

- Meta language to define specific exchange formats
- Document format for semi-structured data
- Well formedness
- XML schema / DTD

```
<data>

<student id="1">

<course id="INF.01014UF" name="Databases"/>

<course id="706.550" name="AMLS"/>

</student>

<student id="5">

<course id="706.004" name="Databases 1"/>

</student>

</data>
```

<?xml version="1.0" encoding="UTF-8"?>

• **XPath** (XML Path Language)

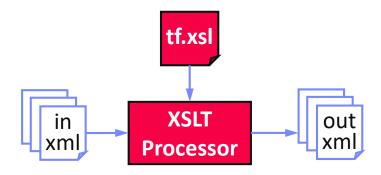
```
/data/student[@id='1']/course/@name
```

- Query language for accessing collections of nodes of an XML document
- Axis specifies for ancestors, descendants, siblings, etc
- **XSLT** (XML Stylesheet Language Transformations)
 - Schema mapping (transformation) language for XML documents

XQuery

Query language to extract, transform, and analyze XML documents

XSLT in Integration Platforms


- Problem
 - XML often used as external and internal data representation
 - Different schemas (message types) → requires mapping

XSLT Overview

- XSLT processor transforms input XML document according to XML stylesheet to output XML documents
- Subtree specifications via XPath, loops, branches built-in functions for text processing, etc
- Streaming: STX or XSLT 3.0 streaming
- CSV and JSON input/output possible

39

XSLT Example

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
  <xsl:element name="suppliers">
    <xsl:for-each select="/resultsets/resultset[@Tablename='Supplier']/row">
      <xsl:element name="supplier">
        <xsl:attribute name="ID"><xsl:value-of select="Suppkey"/></xsl:attribute>
        <xsl:element name="Name"><xsl:value-of select="SuppName"/></xsl:element>
        <xsl:element name="Address"><xsl:value-of select="SuppAddress"/></xsl:element>
      </r></xsl:element></r>
    </xsl:for-each>
  </r></rsl:element></r>
</xsl:template>
</xsl:stylesheet>
<resultssets>
  <resultset Tablename="Supplier">
                                                    <suppliers>
    <row>
                                                      <supplier ID="7">
      <Suppkey>7</Suppkey>
                                                        <Name>MB</Name>
      <SuppName>MB</Suppname>
                                                        <Address>1035 Coleman Rd</Address>
      <SuppAddress>1035 Coleman Rd</SuppAddress>
                                                      </supplier>
    </row>
                                                      <supplier> ... </supplier>
    <row> ... </row>
                                                    <suppliers>
  </resultset>
</resultsets>
```


Summary and Q&A

Distributed TX & Replication Techniques

- Distributed commit protocols
- Different replication techniques

Asynchronous Messaging

- Message queueing systems
- Publish/subscribe systems

Message-oriented Integration Platforms

- System architecture and systems
- Schema mappings via transformations
- Next Lectures (Data Integration Techniques)
 - 04 Schema Matching and Mapping [Oct 27]
 - 05 Entity Linking and Deduplication [Nov 03]

