Slides Credit: Matthias Boehm

SCIENCE PASSION TECHNOLOGY

Data Integration and Large Scale Analysis 05 Entity Linking and Deduplication

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Nov 03, 2023

Agenda

- Motivation and Terminology
- Entity Resolution Concepts
- Entity Resolution Tools
- Example Applications

Motivation and Terminology

4

Recap: Corrupted/Inconsistent Data

#1 Heterogeneity of Data Sources

- Update anomalies on denormalized data / eventual consistency
- Changes of app/prep over time (US vs us) → inconsistencies

#2 Human Error

- Errors in semi-manual data collection, laziness (see default values), bias
- Errors in data labeling (especially if large-scale: crowd workers / users)

#3 Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement) \rightarrow aging

	ueness & plicates	Contradict wrong va		k	Missing Values	Ref. Int	egri	-	Credit: Felix Naumann]
<u>ID</u>	Name	BDay	Age	Sex	Phone	Zip 🔍			
3	Smith, Jane	05/06/1975	44	F	999-9999	98120		Zip	City
3	John Smith	38/12/1963	55	М	867-4511	11111		98120	San Jose
5	John Shinth		55	IVI	007-4311	11111		90001	Lost Angeles
7	Jane Smith	05/06/1975	24	F	567-3211	98120			Ŭ
									Typos

Terminology

5

[Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang-Chiew Tan: Expressive power of entity-linking frameworks. J. Comput. Syst. Sci. 2019]

- Entity Linking
 - *"Entity linking* is the problem of creating links among records representing real-world entities that are related in certain ways."
 - "As an important special case, it includes entity resolution, which is the problem of identifying or linking duplicate entities

Other Terminology

- Entity Linking \rightarrow Entity Linkage, Record Linkage
- Entity Resolution \rightarrow Data Deduplication, Entity Matching

Applications

- Named entity recognition and disambiguation
- Archiving, knowledge bases and graphs
- Recommenders / social networks
- Financial institutions (persons and legal entities)
- Travel agencies, transportation, health care

Barack Obama Barack Hussein Obama II The US president (2016)

Barack and Michelle are married

Entity Resolution Concepts

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. Tutorials, **SIGMOD 2018**, **PVLDB 2018**, **KDD 2019**]

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based Methods with Human in the Loop for Entity Resolution, Tutorial, **CIKM 2019**]

[Felix Naumann, Ahmad Samiei, John Koumarelas: Master project seminar for Distributed Duplicate Detection. Seminar, **HPI WS 2016**]

Problem Formulation

Entity Resolution

7

- "Recognizing those records in two files which represent identical persons, objects, or events"
- Given two data sets A and B
- Decide for all pairs of records $a_i b_i$ in A x B if match (link), no match (non-link), or not enough evidence (possible-link)

Naïve Deduplication

- **UNION DISTINCT via hash** group-by or sort group-by
- **Problem:** only exact matches

Similarity Measures

- Token-based: e.g., Jaccard J(A,B) = $(A \cap B) / (A \cup B)$
- Edit-based: e.g., Levenshtein lev(A,B) \rightarrow min(replace, insert, delete)
- Phonetic similarity (e.g., soundex, metaphone), Python lib Jellyfish

Name	Position	Affiliation	Department
Shafaq Siddiqui	Lecturer	Sukkur IBA	CS
Shafaq Siddiqi	TA	TU Graz	CSBME

[Ivan Fellegi, Alan Sunter: A

pp. 1183-1210, **1969**]

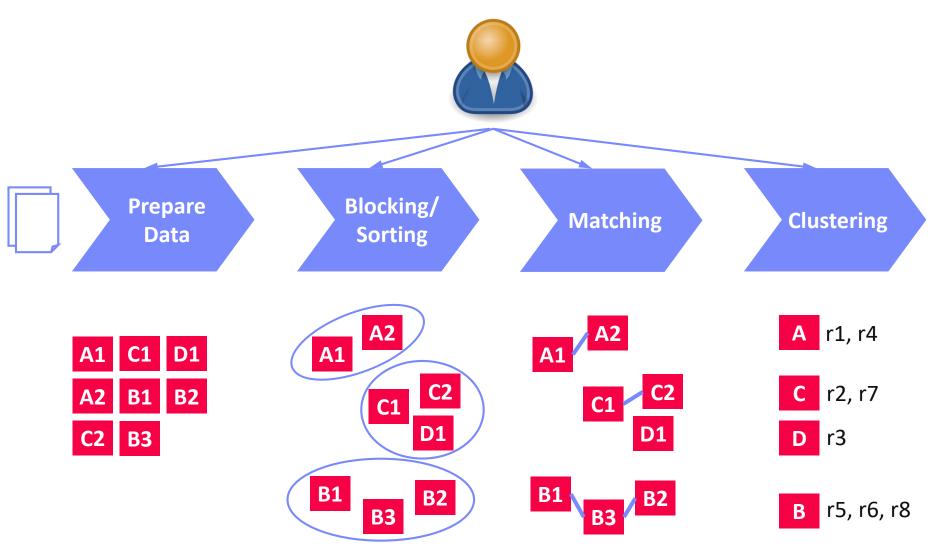
Theory for Record Linkage, J. American. Statistical Assoc.,

Entity Resolution Concepts

8

ISDS

Entity Resolution Pipeline



706.520 Data Integration and Large-Scale Analysis – 05 Entity Linking and Deduplication Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Entity Linking Approaches

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. **PVLDB 2018**]

50 Years of Entity Linkage

 Rule-based and stats Blocking: e.g., sa Matching: e.g., a of attribute value Clustering: e.g., closure, etc. 	ame name ivg similarity es	 Supervised learning Random forest for matching F-msr: >95% w. ~1M labels Active learning for blocking & matching F-msr: 80%-98% w. ~1000 labels 2018 (Deep ML) 				
1969 (Pre-ML)	 Sup / Unsup learning Matching: Decision F-msr: 70%-90% w Clustering: Correlated Markov clustering 	. 500 labels	 Deep learning Deep learning Entity embedding 			

Step 1: Data Preparation

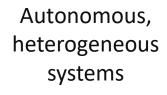
- #1 Schema Matching and Mapping
 - See lecture 04 Schema Matching and Mapping
 - Create homogeneous schema for comparison
 - Split composite attributes

#2 Normalization

- Removal of special characters and white spaces
- Stemming
- Capitalization (to upper/lower)
- Remove redundant works, resolve abbreviations

#3 Data Cleaning

- See lecture 06 Data Cleaning and Data Fusion
- Correct data corruption and inconsistencies



likes/liked/likely/liking → like

Step 2: Blocking and Sorting

#1 Naïve All-Pairs

11

- Brute-force, naïve approach
 → n*(n-1)/2 pairs → O(n²) complexity
- #2 Blocking / Partitioning
 - Efficiently create small blocks of similar records for pair-wise matching
 - Basic: equivalent values on selected attributes (name)
 - Predicates: whole field, token field, common integer, same x char start, n-grams

 \rightarrow IR01111

- Hybrid: disjunctions/conjunctions
- Blocking Keys:

John Roberts20 Main StPlainvilleMA01111Julia Ray32 Main StPlainvilleMA01111

- Learned: Minimal rule set via greedy algorithms
- → Significant reduction: 1M records → 1T pairs
 - → 1K partitions w/ 1K records \rightarrow 1G pairs (1000x)

[Nicholas Chammas, Eddie Pantrige:

Building a Scalable Record Linkage System, Spark+Al Summit 2018]

Step 2: Blocking, cont.

- #3 Sorted Neighborhood
 - Define sorting keys (similar to blocking keys)
 - Sort records by sorting keys
 - Define sliding window of size m (e.g., 100) and compute all-pair matching within sliding window

#4 Blocking via Word Embeddings and LSH/DL

- Compute word/attribute embeddings + tuple embeddings
- Locality-Sensitive Hashing (LSH) for blocking
- K hash functions h(t) → k-dim hash-code
- L hash tables, each k hash functions

V %*% H h1=[-1, 1,1], h2=[1,1, 1], h3=[-1,-1,1], h4=[-1,1,-1],

5 [Muhammad Ebraheem et al: Distributed Representations of Tuples for Entity Resolution. PVLDB 2018]

Distributed Tuple

Representation

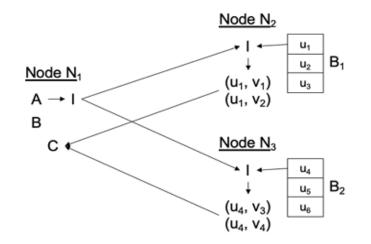
[Saravanan Thirumuruganathan et al. Deep Learning for Blocking in Entity Matching [...]. **PVLDB 2021**]

v[t1]=[0.45,0.8,0.85]	[1.2,2.1,-0.4,-0.5]	[1,1,-1,-1]	[12] Hash
v[t2]=[0.4,0.85,0.75]			

Entity Resolution Concepts

Step 2: Blocking, cont.

- #5 TF/IDF based blocking
 - top-k blocking scheme



[Derek Paulsen et al: Sparkly: A Simple yet Surprisingly Strong TF/IDF Blocker for Entity Matching. **PVLDB 2023**]

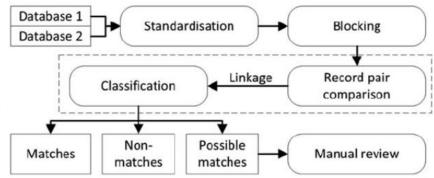
Step 3: Matching

#1 Basic Similarity Measures

- Pick similarity measure sim(r, r') and thresholds: high θ_h (and low θ_l)
- Record similarity: avg attribute similarity
- Match: sim(r, r') > θ_h Non-match: sim(r, r') < θ_l
 possible match: θ_l < sim(r, r') < θ_h

#2 Learned Matchers (Traditional ML)

- Phase 1: Model Generation
- Phase 2: Model Application
- Selection of samples for labeling (sufficient, suitable, balanced)
- SVM and decision trees, logistic regression, random forest, XGBoost



[O'Hare, K.et.al. D. P., & A. Jurek-Loughrey, 2019]

[Mikhail Bilenko, Raymond J. Mooney: Adaptive duplicate detection using learnable string similarity measures. **KDD 2003**]

[Hanna Köpcke, Andreas Thor, Erhard Rahm: Evaluation of entity resolution approaches on real-world match problems. **PVLDB 2010**]

Step 3: Matching, cont.

- Deep Learning for ER
 - Automatic representation learning from text (avoid feature engineering)
 - Leverage pre-trained word embeddings for semantics (no syntactic limitations)

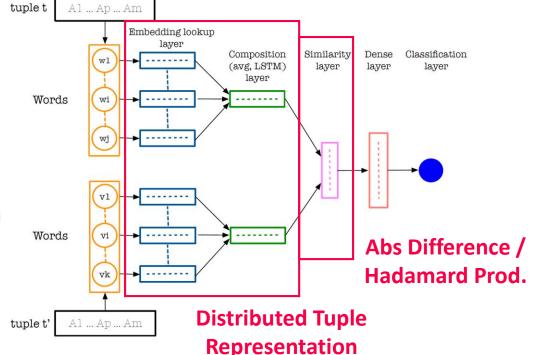
Example DeepER

[Muhammad Ebraheem et al: Distributed Representations of Tuples for Entity Resolution. **PVLDB 2018**]

Example Magellan

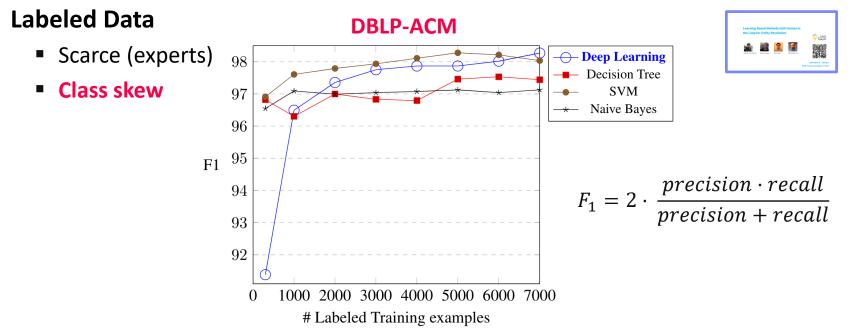
DL for text and dirty data

[Sidharth Mudgal et al: Deep Learning for Entity Matching: A Design Space Exploration. SIGMOD 2018]



Step 3: Matching, cont.

[Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen: Learning-Based Methods with Human in the Loop for Entity Resolution, Tutorial, **CIKM 2019**]



Transfer Learning

- Learn model from high-resource ER scenario (w/ regularization)
- Fine-tune using low-resource examples

Active Learning

Select instances for tuning to min labeling

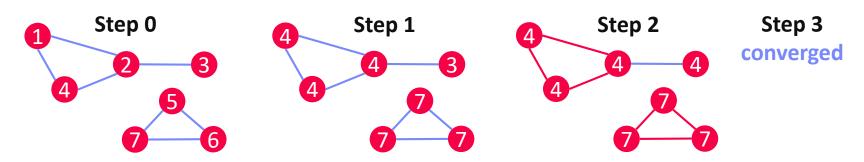
[Jungo Kasai et al: Low-resource Deep Entity Resolution with Transfer and Active Learning. **ACL 2019**]

706.520 Data Integration and Large-Scale Analysis – 05 Entity Linking and Deduplication Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Step 4: Clustering

Recap: Connected Components

- Determine connected components of a graph (subgraphs of connected nodes)
- Propagate max(current, msgs) if != current to neighbors, terminate if no msgs



Clustering Approaches

- Basic: connected components

 (transitive closure) w/ edges sim > θ_h
 → Issues: big clusters and dissimilar records
- [Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, Hyun Chul Lee: Framework for Evaluating Clustering Algorithms in Duplicate Detection. **PVLDB 2009**]

- Correlation clustering: +/- cuts based on sims → global opt NP-hard
- Markov clustering: stochastic flow simulation via random walks

Incremental Data Deduplication

- Goals
 - Incremental stream of updates
 - → previously **computed results obsolete**

[Anja Gruenheid, Xin Luna Dong, Divesh Srivastava: Incremental Record Linkage. **PVLDB 2014**]

Same or similar results AND significantly faster than batch computation

Approach

- End-to-end incremental record linkage for new and changing records
- Incremental maintenance of similarity graph and incremental graph clustering
- Initial graph created by correlation clustering
- Greedy update approach in polynomial time
 - Directly connect components from increment ΔG into Q
 - Merge of pairs of clusters to obtain better result?
 - Split of cluster into two to obtain better result?
 - Move nodes between two clusters to obtain better result?

Entity Resolution Tools

https://docs.dedupe.io/en/latest/API-documentation.html https://dedupeio.github.io/dedupe-examples/docs/csv_example.html

- Overview
 - Python library for data deduplication (entity resolution)
 - By default: logistic regression matching (and blocking)

```
Example fields = [
```

```
{'field':'Site name', 'type':'String'},
   {'field':'Address', 'type':'String'}]
deduper = dedupe.Dedupe(fields)
```

sample data and active learning
deduper.sample(data, 15000)
dedupe.consoleLabel(deduper)

```
Do these records refer
to the same thing?
(y)es / (n)o /
(u)nsure / (f)inished
```

learn blocking rules and pairwise classifier
deduper.train()

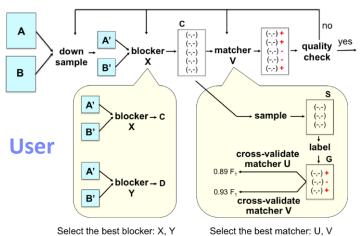
```
# Obtain clusters as lists of (RIDs and confidence)
threshold = deduper.threshold(data, recall_weight=1)
clustered_dupes = deduper.match(data, threshold)
```


Entity Resolution Tools

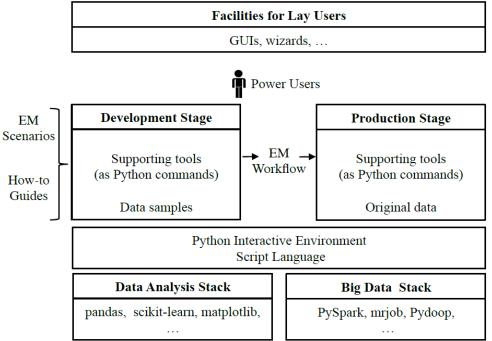
Magellan (UW-Madison)

System Architecture

- How-to guides for users
- Tools for individual steps of entire ER pipeline
- Build on top of existing Python/big data stack
- Scripting environment for power users



[Pradap Konda et al.: Magellan: Toward Building Entity Matching Management Systems. **PVLDB 2016**]

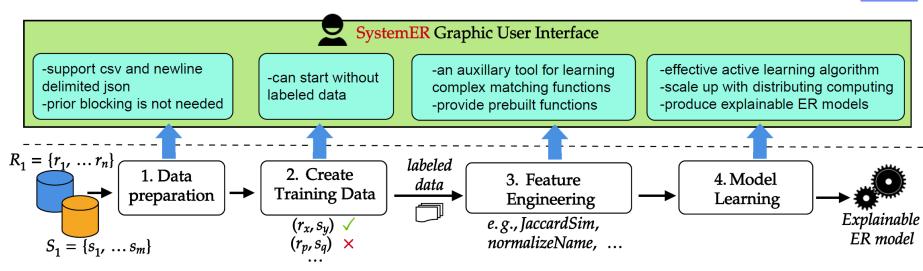


[Yash Govind et al: Entity Matching Meets Data Science: A Progress Report from the Magellan Project. **SIGMOD 2019**]

706.520 Data Integration and Large-Scale Analysis – 05 Entity Linking and Deduplication Shafaq Siddiqi, Graz University of Technology, WS 2023/24

SystemER (IBM Research – Almaden)

[Kun Qian, Lucian Popa, Prithviraj Sen: SystemER: A Human-in-the-loop System for Explainable Entity Resolution. **PVLDB 2019**]



Learns explainable ER rules (in HIL)

DBLP.title = ACM.title
AND DBLP.year = ACM.year

AND jaccardSim(DBLP.authors,ACM.authors)>0.1

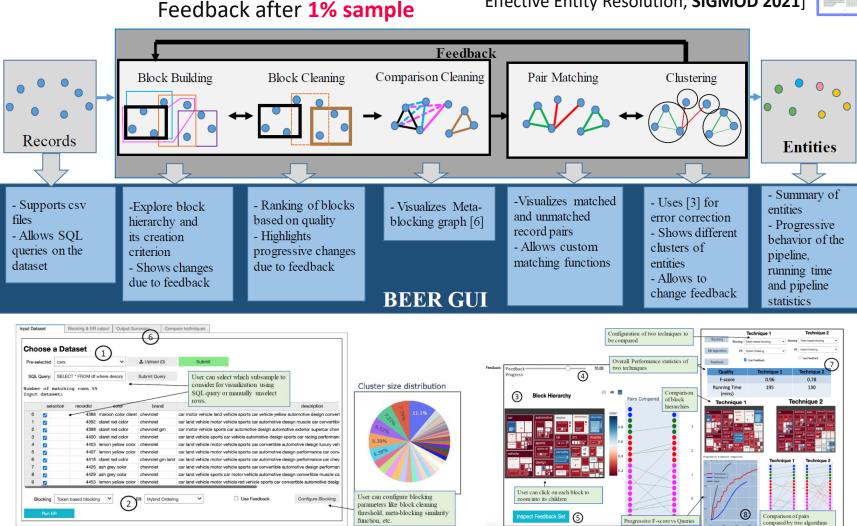
- AND jaccardSim(DBLP.venue,ACM.venue)>0.1
- → SamePaper(DBLP.id,ACM.id)

[Mauricio A. Hernández, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, Ryan Wisnesky: HIL: a high-level scripting language for entity integration. **EDBT 2013**]

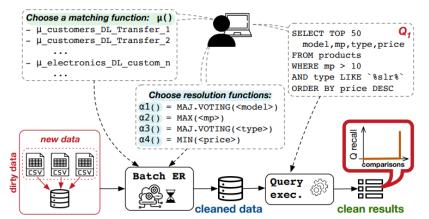
23

BEER (Blocking for Effective Entity Resolution)

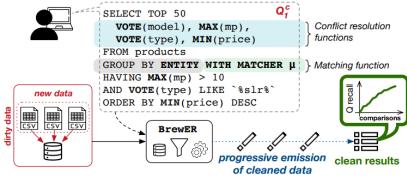
[Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava: BEER: Blocking for Effective Entity Resolution, **SIGMOD 2021**]



BrewER (Entity Resolution On-Demand)



(a) The traditional pipeline: the data scientist specifies how to clean the data with ER; once cleaned, she issues the query.



(b) The ER-on-demand pipeline: the data scientist specifies how to clean the data within the query.

[Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, Felix Naumann: Entity Resolution On-Demand. PVLDB 2022]

	nera			0
初	1 200	1 33	77 H	15
251				

SELECT [TOP k] $\langle \alpha_i(A_i) \rangle$ FROM \mathcal{D} [WHERE φ] **GROUP BY** ENTITY WITH MATCHER μ [HAVING $\langle \alpha_i(A_i) | \{ \text{LIKE} | \text{IN} | < | \le | > | \ge | = \} | const \rangle \}$ [ORDER BY $\alpha_i(A_i)$ [ASC | DESC]]

Figure 2: Query syntax in BrewER.

Example Applications

26

Record Linkage

- Task: Distributed Entity Resolution on Apache Spark
 - Uni Leipzig Benchmarks
- Example 1: DBLP, ACM, Google Scholar Publications
 - (title, authors, venue, year)
 - Basic preprocessing via title capitalization, etc
 - How about leveraging the linked PDF papers?
- Example 2: Amazon, Google Products
 - (name, description, manufacturer, price)
 - NLP for matching medium and long descriptions, e.g., word embeddings
 - How about leveraging the product images (different angles)

SIGMOD Programming Contest 2022

Design blocking scheme for Notebooks specifications dataset

https://dbgroup.ing.unimore.it/sigmod22 contest/task.shtml?content=description

https://dbs.uni-leipzig.de/

research/projects/object_matching/ benchmark datasets for entity resolution

In practice:

multi-modal data, and

Data Management – Autograding

- Plagiarism Detection via Entity Resolution
 - https://issues.apache.org/jira/browse/SYSTEMDS-3191
 - Data preparation: file names/properties, runtime, correctness
 - Blocking: by programming language, results sets
 - Matching
 - Exact matches via basic diff + threshold
 - Code similarity via SotA embeddings
 - Clustering
 - Connected components within each block (min sim threshold)

[Fangke Ye et al: MISIM: An End-to-End Neural Code Similarity System. **CoRR 2020** arxiv.org/pdf/2006.05265.pdf]

Summary and Q&A

- Motivation and Terminology
- Entity Resolution Concepts
- Entity Resolution Tools
- Example Applications

Fundamental Data Integration Technique, w/ lots of applications + remaining challenges

- Next Lectures (Data Integration Architectures)
 - 06 Data Cleaning and Data Fusion [Nov 10]

