

SCIENCE PASSION TECHNOLOGY

Data Integration and Large Scale Analysis 06 Data Cleaning

Shafaq Siddiqi

Graz University of Technology, Austria

Announcement

- No Lecture on 24th November
 - Shift every lecture a week forward and last lecture on 26 Jan
 - OR
 - Combine last two lecture and finish on 19 Jan

Agenda

- Motivation and Terminology
- Data Cleaning and Fusion
- Missing Value Imputation

Motivation and Terminology

TU Graz

Recap: Corrupted/Inconsistent Data

#1 Heterogeneity of Data Sources

- Update anomalies on denormalized data / eventual consistency
- Changes of app/prep over time (US vs us) → inconsistencies

#2 Human Error

- Errors in semi-manual data collection, laziness (see default values), bias
- Errors in data labeling (especially if large-scale: crowd workers / users)

#3 Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement) \rightarrow aging

Uniq du	ueness & plicates	Contradic wrong v	tions 8 alues	k	Missing Values	Ref. Int	tegrit	[; y	Credit: Felix Naumann]
ID	Name	BDay	Age	Sex	Phone	Zip 🔍			
3	Smith. Jane	05/06/1975	44	F	999-9999	98120		Zip	City
2		20/12/1002			007 4544			98120	San Jose
3	John Smith	38/12/1963	55	IVI	867-4511	11111		90001	Lost Angeles
7	Jane Smith	05/06/1975	24	F	567-3211	98120		50001	LOSt Angeles
									Typos

Examples (aka errors are everywhere)

Duplicates

6

- Formatting
- Data Entry Errors
- Encoding errors
- Missing values
- Date-time encoding

Beni Airport, Beni, Congo (Kinshasa), BNC, FZNP, 0.575, 2

- + Beni Airport,Beni,Democratic Republic of Congo,BNC,
 - RAF St Athan,4Q,STN,UNited Kingdom,N
 - + RAF St Athan,4Q,STN,United Kingdom,N
 - Oyo Ollombo Airport,Oyo,Congo (Brazzaville),O
 - + Oyo Ollombo Airport,Oyo,Republic of Congo,OLL

ID, NAME, RATING, PHONENUMBER, NO_OF_REVIEWS, ADDRESS

144598000001,1,5,"(800)·586-5735",38,"867-№ Hermitage Ave, Chicago, IL 60622" 1445980000003,1760,4,"(415)·359-2156",33,"6333·3rd st, Los'Angeles, CA 90036" 1445980000003,1760,4,"(415)·359-1212",454,"1760·Polk St, San-Francisco, CA 94109" 1445980000005,"□□□Disiac:Dounge",3.5,"(212)·586-980",164,"402'W 54th:st, New York, NY·10019" 1445980000006,"□□□Disiac:Dounge",3.5,"(212)·586-9800",164,"402'W 54th:st, New York, NY·10019" 144598000006,"□□□F,4,"(415)·967-2726",63,"San-Francisco, CA 94109" 1445980000008,"□□Errea.",4,"(415)·967-2726",63,"San-Francisco, CA 94109" 1445980000008,"□□Eretrea.",4,"(415)·967-2726",63,"San-Francisco, CA 94109" 1445980000008,"10E-Restaurant:",4,"(213)·488-1096",166,"811'W.7th:St, Los'Angeles, CA 90017" 1445980000009,"10E-Restaurant:",4,"(415)·967-2726",45,"AS, Mond:St..oakland. CA 94607"

src	flight	scheduled_dept	actual_dept
ua	2011-12-01-UA-2708-EWR-CLT	Thu- Dec 1 2:55 PM	Thu- Dec 1 2:55 PM
airtravelcenter	2011-12-01-UA-2708-EWR-CLT		12/1/11 3:04 PM (-05:00)
myrateplan	2011-12-01-UA-2708-EWR-CLT		12/1/11 3:04 PM (-05:00)
helloflight	2011-12-01-UA-2708-EWR-CLT		12/1/11 3:04 PM (-05:00)
flytecomm	2011-12-01-UA-2708-EWR-CLT		12/1/11 3:04 PM (-05:00)
flights	2011-12-01-UA-2708-EWR-CLT		2011-12-01 02:52 PM
businesstravellogue	2011-12-01-UA-2708-EWR-CLT		2011-12-01 02:52 PM
flylouisville	2011-12-01-UA-2708-EWR-CLT		2011-12-01 02:52 PM
flightstats	2011-12-01-UA-2708-EWR-CLT	2011-12-01 2:55 PM	2011-12-01 2:52 PM
quicktrip	2011-12-01-UA-2708-EWR-CLT	2011-12-01 2:55 PM	2011-12-01 2:52 PM
flightview	2011-12-01-UA-2708-EWR-CLT		3:04 PMDec 01
panynj	2011-12-01-UA-2708-EWR-CLT		3:04 PMDec 01
gofox	2011-12-01-UA-2708-EWR-CLT		3:04 PMDec 01

Terminology

- #1 Data Cleaning (aka Data Cleansing)
 - Detection and repair of data errors
 - Outliers/anomalies: values or objects that do not match normal behavior (different goals: data cleaning vs finding interesting patterns)
 - Data Fusion: resolution of inconsistencies and errors (e.g., entity resolution see Lecture 05)
- #2 Missing Value Imputation
 - Fill missing info with "best guess"
 - Difference between NAs and 0 (or special values like NaN) for ML models
- #3 Data Wrangling
 - Automatic cleaning unrealistic? → Interactive data transformations
 - Recommended transforms + user selection
- Note: Partial Overlap w/ KDDM → it's fine, different perspectives

Express Expectations as Validity Constraints

- Manual Approach: "Common Sense"
- (Semi-)Automatic Approach: Expectations!
 - PK \rightarrow Values must be unique and defined (not null)
 - Exact PK-FK \rightarrow Inclusion dependencies
 - Noisy PK-FK \rightarrow Robust inclusion dependencies $|R[X] \in S[Y]| / |R[X]| > \delta$
 - Semantics of attributes \rightarrow Value ranges / # distinct values
 - Invariant to capitalization \rightarrow Duplicates that differ in capitalization
 - Patterns \rightarrow regular expressions

Formal Constraints

Functional dependencies (FD), conditional FDs (CFD), metric dependencies

Shafaq Siddiqi, Graz University of Technology, WS 2023/24

- Inclusion dependencies, matching dependencies
- $\forall t_{\alpha}t_{\beta} \in R: \neg(t_{\alpha}.Role = t_{\beta}.Role \wedge t_{\alpha}.City = 'NYC'$ Denial constraints $\wedge t_{\beta}$. City \neq 'NYC' $\wedge t_{\alpha}$. Salary $< t_{\beta}$. Salary)

- US, DFW, LIT, ER4; M83; M83

Route

(Airline, From, To)

+ US, DFW, LIT, ER4; M83

Age=9999?

- RAF St Athan,4Q,STN,UNited Kingdom,N

+ RAF St Athan, 40, STN, United Kingdom, N

2019-11-15 vs Nov 15, 2019

Planes

Data Cleaning and Fusion

10

Data Validation

validation checks on expected shape before training first model

[Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, Martin Zinkevich: Data Management Challenges in Production Machine Learning. Tutorial, **SIGMOD 2017**]

Research)

- Check a feature's min, max, and most common value
 - Ex: Latitude values must be within the range [-90, 90] or $[-\pi/2, \pi/2]$
- The histograms of continuous or categorical values are as expected
 - Ex: There are similar numbers of positive and negative labels
- Whether a feature is present in enough examples
 - Ex: Country code must be in at least 70% of the examples
- Whether a feature has the right number of values (i.e., cardinality)
 - Ex: There cannot be more than one age of a person

(Amazon

Research)

[Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bießmann, Andreas Grafberger: Automating Large-Scale

Data Validation, cont.

Constraints
and Metrics
for quality
check UDFs

constraint	arguments	Data Quality Ver	rification. PVLDB 2018]
dimension <i>completeness</i> isComplete hasCompleteness	column column, udf	metric	(Amazor
dimension consistency isUnique	column	Completeness	Research
hasDistinctness isInRange hasConsistentType isNonNegative isLessThan satisfies satisfiesIf hasPredictability	column, udf column, value range column column pair predicate predicate pair column column(s) udf	dimension <i>consistency</i> Size Compliance Uniqueness Distinctness ValueRange DataType Predictability	
statistics (can be used to	verify dimension <i>consistenc</i> _i	statistics (can be used to Minimum	Organizational Lesson:
hasSize hasTypeConsistency	udf column, udf	Maximum Mean	benefit of shared
hasCountDistinct hasApproxCountDistinct	column column, udf	StandardDeviation	vocabulary/procedures
hasMin hasMax	column, udf column, udf	CountDistinct ApproxCountDistinct	vocabalar y/procedures
hasMean hasStandardDeviation hasApproxOuantile	column, udf column, udf column, quantile, udf	ApproxQuantile	Technical Lesson:
hasEntropy hasMutualInformation	column, udf	Correlation Entropy	fast/scalable; reduce
hasHistogramValues hasCorrelation	column, udf column pair, udf	Histogram	manual and ad-hoc
time hasNoAnomalies	metric, detector	MutualInformation	analysis

Approach

- **#1** Quality checks on basic metrics, computed in Apache Spark
- **#2 Incremental maintenance** of metrics and quality checks

Data Validation, cont.

TensorFlow Data Validation (TFDV)

- Library or TFX components
- Provides functions for stats computation, validation checks and anomaly detection

		0	(2)		(2)			
atures: 🗹 ir	nt(5) 🗹	float(10)	string(2)		wn(1)			
Numeric Featu	ures (15)							Chart to show
								Standard 👻
count	missing	mean	std dev	zeros	min	median	max	log expand
10,000	0%	6.63	3.4	0%	1	7	12	200
								2 4 6 8 10
trip_miles 10,000	0%	2.75	6.41	27.41%	0	0.9	191	2К
								20 60 100 140 180
aropott_longitu	Jde 3 07%	-87.65	0.06	0%	-87 91	-87.64	-87 54	
9,090	0.07%	-07.00	0.00	0.6	-07.91	-07.04	-07.54	1К
dronoff comm	unity area							-87.85 -87.75 -87.65
9.677	3.23%	20.84	17.64	0%	1	8	77	,

[Mike Dreves; Gene Huang; Zhuo Peng; Neoklis Polyzotis; Evan Rosen; Paul Suganthan: From

Data to Models and Back. DEEM 2020]

(Google)

Standardization and Normalization

- #1 Standardization
 - Centering and scaling to mean 0 and variance 1
 - Ensures well-behaved training
 - Densifying operation
 - Awareness of NaNs
 - Batch normalization in DNN: standardization of activations

X = X - colMeans(X); X = X / sqrt(colVars(X));

X = replace(X, pattern=NaN, replacement=0); #robustness

#2 Normalization

- Aka min-max normalization
- Rescale values into common range [0,1]
- Avoid bias to large-scale features
- Does not handle outliers

$$X = (X - COIMINS(X)) / (colMaxs(X) - colMins(X));$$

v

111

 $Q3 + 1.5 \times IQR$

2.698*o*

30

 2σ

2σ

Winsorizing and Trimming

- Recap: Quantiles
 - Quantile $Q_p w/p \in (0,1)$ defined as $P[X \le x] = p$

Winsorizing

- Replace tails of data distribution at userspecified threshold
- Quantiles / std-dev
- → Reduce skew

Truncation/Trimming

- **Remove** tails of data distribution at userspecified threshold
- Largest Difference from Mean

compute quantiles for lower and upper ql = quantile(X, 0.05);

qu = quantile(X, 0.95);

replace values outside [ql,qu] w/ ql and qu Y = ifelse(X < ql, ql, X);Y = ifelse(Y > qu, qu, Y);SystemDS: winsorize() outlier()

 $Q1 - 1.5 \times IOR$

 -3σ -2σ

 -2σ -1σ

-2 698*a*

 $-\dot{3}\sigma$

Mediar

00

 1σ

10

[Credit: https://en.wikipedia.org]

0.6745*σ*

 $-i\sigma$ Ōσ

 -0.6745σ

remove values outside [ql,qu]

```
I = X < qu | X > ql;
```

```
Y = removeEmpty(X, "rows", select = I);
```

```
# determine largest diff from mean
I = (colMaxs(X) - colMeans(X))
  > (colMeans(X)-colMins(X));
Y = ifelse(xor(I,op), colMaxs(X), colMins(X));
```


Winsorizing and Trimming, cont.

SystemDS outlierByIQR

 less than Q1 – (k × IQR) or greater than Q3 + (k × IQR) → outlier

SystemDS outlierBySd

 less than mean – (k × stdev) or greater than mean + (k × stdev) → outlier

Methods for Handling Outliers

- Replace outliers with default values (constants or mean/median/mode)
- Update outliers as missing values
- Data clipping

-3σ -2σ -1σ μ 1σ 2σ 3σ

03

median

Q1

Outliers and Outlier Detection

- Types of Outliers
 - Point outliers: single data points far from the data distribution
 - Contextual outliers: noise or other systematic anomalies in data
 - Sequence (contextual) outliers: sequence of values w/ abnormal shape/agg
 - Univariate vs multivariate analysis
 - Beware of underlying assumptions (distributions)

Types of Outlier Detection

- Type 1 Unsupervised: No prior knowledge of data, similar to unsupervised clustering → expectations: distance, # errors
- Type 2 Supervised: Labeled normal and abnormal data, similar to supervised classification
- Type 3 Normal Model: Represent normal behavior, similar to pattern recognition → expectations: rules/constraints

[Varun Chandola, Arindam Banerjee, Vipin Kumar: Anomaly detection: A survey. ACM Comput. Surv. 2009]

Constraints to the same Constraints to the same to th		
- Anno 2014 - Control	• Service 10	
	Children and Anna Andreas	
 A maximum di anti più di anti	State of the second	
		l
Automotive and the test to be and		
	Subplicities de las hamanes	l

Outlier Detection Techniques

- Classification
 - Learn a classifier using labeled data
 - Binary: normal / abnormal

[Varun Chandola, Arindam Banerjee, Vipin Kumar: Anomaly detection: A survey. **ACM Comput. Surv. 2009**]

Reset (Sector A form)	

- Multi-class: k normal / abnormal (one against the rest) \rightarrow none=abnormal
- Examples: AutoEncoders, Bayesian Networks, SVM, decision trees

K-Nearest Neighbors

- Anomaly score: distance to kth nearest neighbor
- Compare distance to threshold + (optional) max number of outliers

Clustering

- Clustering of data points, anomalies are points not assigned / too far away
- Examples: DBSCAN (density), K-means (partitioning)
- Cluster-based local outlier factor (global, local, and size-specific density)

Outlier Detection Techniques, cont.

Frequent Itemset Mining

 Rare itemset mining / sequence mining; Examples: Apriori/Eclat/FP-Growth

TID	Items			
1	Bread, Milk			
2	Bread, Diaper, Beer, Eggs			
3	Milk, Diaper, Beer, Coke			
4	Bread, Milk, Diaper, Beer			
5	Bread, Milk, Diaper, Coke			

Coverage Analysis

- Given a database D and a data pattern P
- Coverage of a data pattern cov(P) is defined as the number of records in table T that satisfy pattern P
- Pattern P is a covered pattern if $cov(P) \ge \tau$
- Otherwise, this pattern is said to be uncovered

[Yin Lin et al: Identifying Insufficient Data Coverage in Databases with multiple Relations. **PVLDB 2020**]

Time Series Anomaly Detection

- **Basic Problem Formulation**
 - Given regular (equi-distant) time series of measurements
 - Detect anomalous subsequences s of length I (fixed/variable)
- Anomaly Detection
 - **#1** Supervised: Classification problem
 - #2 Unsupervised: k-Nearest Neighbors (discords) \rightarrow All-pairs similarity join

XXVIII, SDM 2023]

ISDS

[Chin-Chia Michael Yeh et al:

Matrix Profile I: All Pairs Similarity

View That Includes Motifs, Discords

Joins for Time Series: A Unifying

Matrix Profile

Outlier Detection in Non-IID Data

- Non-Independent and Identically Distributed (non-IID)
 - Inter-dependencies, correlations, heterogeneity, and non-stationarity
 - Indicating coupling, correlations between variables
- ARCUS (Adaptive framework foR online deep anomaly detection Under a complex evolving data Stream)
 - A model pool of auto-encoders
 - Same structure but different hyperparameters
 - Concept drift aware pool adaption using Hoeffding's Inequality (statistical test)

[Susik Yoon et. al. Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex Evolving Data Stream. **KDD 2022**]

Martine Model Production Of Street & Campbellin	inter New Assessity Selection whing Data News
All for a second	AND ADDRESS
And in case of the local division of the loc	
Balances	
PRINTER AND ADDRESS	· No. by
A REAL PROPERTY AND ADDRESS	

https://datasciences.org/non-iid-learning/

20

Automatic Data Repairs

- Overview Repairs
 - Question: Repair data, rules/constraints, or both?
 - General principle: "minimality of repairs"

Note: Piece-meal vs holistic data repairs

Automatic Data/Rule Repairs, cont.

Example

 Expectation: City
 Country; new data conflicts [George Beskales, Ihab F. Ilyas, Lukasz Golab, Artur Galiullin: On the relative trust between inconsistent data and inaccurate constraints. **ICDE 2013**]

the local	idente Trank &		toni Unte
	and here into	to Elastronem.	
0803		(2188)	1911
10000			
212020			
124000			
10.10			
10.25			
1000			
201 Belleville			

IATA	ICAO	Name	City	Country
MEL	YMML	Melbourne International Airport	Melbourne	Australia
MLB	KMLB	Melbourne International Airport	Melbourne	USA

■ Relative Trust: {FName, LName} → Salary

- Trusted FD: → change salary according to {FName, LName} → Salary
- Trusted Data: → change FD to {FName, LName, DoB, Phone} → Salary
- Equally-trusted: → change FD to {FName, LName, DoB} → Salary AND data accordingly

23

Excursus: Simpson's Paradox

 Overview: Statistical paradox stating that an analysis of groups may yield different results at different aggregation levels

Example UC Berkeley '73

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

more women had applied to departments that admitted a small percentage of applicants

"The real Berkeley story

A Wall Street Journal interview with Peter Bickel, one of the statisticians involved in the original study, makes clear that Berkeley was never sued—it was merely afraid of being sued"

	M	en	Women		
	Appl.	Adm.	Appl.	Adm.	
Α	825	62%	108	82%	
В	560	63%	25	68%	
С	325	37%	593	34%	
D	417	33%	375	35%	
Е	191	28%	393	24%	
F	373	6%	341	7%	

[https://www.refsmmat.com/ posts/2016-05-08-simpsons _paradox-berkeley.html]

Selected Research

[Jiannan Wang et al: A sample-and-clean framework for fast and accurate query processing on dirty data. **SIGMOD 2014**]

ActiveClean (SampleClean)

- Suggest sample of data for manual cleaning (rule/ML-based detectors, Simpson's paradox)
- Example Linear Regression

[Sanjay Krishnan et al: ActiveClean: Interactive

Modeling. PVLDB 2016]

Data Cleaning For Statistical

(b) Mixed Dirty and Clean (c) Sampled Clean Data

- Approach: Cleaning and training as form of SGD
 - Initialization: model on dirty data
 - Suggest sample of data for cleaning
 - Compute gradients over newly cleaned data
 - Incrementally update model w/ weighted gradients of previous steps

Selected Research, cont.

- HoloClean
 - Clean and enrich based on quality rules, value correlations, and reference data
- [Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, Christopher Ré: HoloClean: Holistic Data Repairs with Probabilistic Inference. **PVLDB 2017**]

- Probabilistic models for capturing data generation
- HoloDetect
 - Learn data representations of errors
 - Data augmentation w/ erroneous data from sample of clean data (add/remove/exchange characters)

[Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, Theodoros Rekatsinas: HoloDetect: Few-Shot Learning for Error Detection, **SIGMOD 2019**]

Rotabeland, Para-Materia	carring for \$ \$ or or Theber State.

Other Systems

- AlphaClean (generate data cleaning pipelines) [preprint 2019]
- BoostClean (generate repairs for domain value violations) [preprint 2017]
- CPClean (prioritize repairs on incomplete data)[Bojan Karlaš et al. PVLDB 2021]

- Problem
 - Given query tree or data flow graph
 - Find placement of data cleaning operators to reduce costs

Approach

- Budget B of user actions
- Active learning user feedback on query results
- Map query results back to sources via lineage
- Cleaning in decreasing order of impact

Extensions?

- Query-aware placement/refinement (e.g., UK) of cleaning primitives
- Ordering of cleaning primitives (norm, dedup, missing value?)

Data Wrangling

Data Wrangler Overview

- Interactive data cleaning via spreadsheet-like interfaces
- Iterative structure inference, recommendations, and data transformations
- Predictive interaction

 (infer next steps from interaction)

Commercial/Free Tools

- Trifacta (from Data Wrangler)
- Google Fusion Tables: semi-automatic resolution and deduplication (sunset Dec 2019)

[Vijayshankar Raman, Joseph M. Hellerstein: Potter's Wheel: An Interactive Data Cleaning System. **VLDB 2001**]

[Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, Jeffrey Heer: Wrangler: interactive visual specification of data transformation scripts. **CHI 2011**]

[Jeffrey Heer, Joseph M. Hellerstein, Sean Kandel: Predictive Interaction for Data Transformation. **CIDR 2015**]

-00-	100 Tabr
-	
	To any other states of the
· International Contents of Contents	
	and a solution star star from
and and so the former	Zidatoccephies
	1900 000 000 00 00
	ALC: NOT THE R

Data Wrangling, cont.

Example: Trifacta Smart Cleaning

[Credit: Alex Chan (Apr 2, 2019) https://www.trifacta.com/blog/trifacta-fordata-quality-introducing-smart-cleaning/]

	Initial Sample							-
1	III ≡ ∽ ~ 4 _B ·8	\$ ₽ · A ₂ · + · E∃	A · 🗄 · 🗄	₩₩₩ {}• ₹• Σ	· · · · · · · · · · · · · · · · · · ·	1) 周荘・	Details	×
							O avent dt	
	SSN primaryid	✓ # caseid ✓	i_f_code	✓ RBC drugname	✓ ③ event_dt	✓ # dr.	G event_ut	
	IIIII					11	Quality	
		m I .						140
	39 220 Categories	10M - 10 43M	1 Category	6.460 Categories	1984 - 2015	1.143	Valid	23971 21.89
	100036412	10003641	F	BISOPROLOL	Apr-01-2013	1.140	Mismatched	63978 58.43
	100036412	10803641	F	COGENTIN	Apr-01-2013		Missing	21543 19.68
	100036412	10003641	F	COGENTIN	Apr-01-2013		Unious Malazza	
	100036412	10083641	F	DEPAKOTE	Apr-01-2013		Unique values	
	100836412	10003641	F	INVEGA	Apr-01-2013			21,543
	100036412	10883641	F	METFORMIN	Apr-01-2013		2014/01/01	2,052
	100038593	10003859	F	JAKAFI	Jul-17-2013		2013/01/01	714
	100038593	10003859	F	JAKAFI	Jul-17-2013		2014/05/01	49
	100038593	10003859	F	OMEPRAZOLE.	Jul-17-2013		2014/03/01	-12
	100038593	10003859	F	ASPIRIN.	Jul-17-2013		Jan-01-2014	450
	100038593	10003859	F	METOPROLOL	Jul-17-2013		Show more values	
	100038593	10003859	F	ATORVASTATIN	Jul-17-2013		Distribution	
	100038593	10003859	F	PREDNISONE.	Jul-17-2013		Distribution	
	100038593	10003859	F	VORICONAZOLE.	Jul-17-2013			
	100838593	10003859	F	SERTRALINE	Jul-17-2013			
	100038593	10003859	F	ACYCLOVIR	Jul-17-2013			
	100038593	10003859	F	DILTIAZEM	Jul-17-2013			
	100038593	10003859	F	LISINOPRIL.	Jul-17-2013		Jan 1984 - Dec 2015	
	100038603	10003860	F	YAZ	2008/07/01		Patterns	
	100038603	10003860	F	YASMIN	2008/07/01			10.071
	100038603	10003860	F	REOPRO	2008/07/01		{month-abbrev}-{dd}-{yyyy}	63,978
	100038603	10003860	F	AMITRIPTYLINE	2008/07/01		{yyyy}/{mm}/{dd}	23,971
	100038603	10003860	F	ACIPHEX	2008/07/01		Show pattern details	
	100038603	10003860	F	TOPAMAX	2008/07/01			
	100135054	10013505	F	AZD6140	Oct-14-2013		Show additional deta	ils >
	100135054	10013505	F	GLUCOTROL · XL	Oct-14-2013			
	100135054	10013505	F	ZETIA	Oct-14-2013		Suggestions	
	100135054	10013505	F	I ANTUS	Oct-14-2013			

706.520 Data Integration and Large-Scale Analysis – 06 Data Cleaning Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Missing Value Imputation

Basic Missing Value Imputation

- Missing Value
 - Application context defines if 0 is missing value or not
 - If differences between 0 and missing values, use NA or NaN?
 - Could be a number outside the domain or symbol as '?'

Relationship to Data Cleaning

- Missing value is error, need to generate data repair
- Data imputation techniques can be used as outlier/anomaly detectors

Recap: Reasons

- #1 Heterogeneity of Data Sources
- #2 Human Error
- #3 Measurement/Processing Errors

MCAR: Missing Completely at Random MAR: Missing at Random MNAR: Missing Not at Random

Basic Missing Value Imputation

Missing Completely at Random

 Missing values are randomly distributed across all records (independent from recorded or missing values)

Missing at Random

- Missing values are randomly distributed within one or more sub-groups of records
- Missing values depend on the recorded but not on the missing values, and can be recovered

Not Missing at Random

- Missing data depends on the missing values themselves
- E.g., missing low salary, age, weight, etc.

[Abdulhakim Ali Qahtan, Ahmed K. Elmagarmid, Raul Castro Fernandez, Mourad Ouzzani, Nan Tang: FAHES: A Robust **Disguised Missing Values** Detector. **KDD 2018**]

ID	Position	Salary (\$)	
1	Manager	null	(3500)
2	Secretary	2200	
3	Manager	3600	
4	Technician	null	(2400)
5	Technician	2500	
6	Secretary	null	(2000)

ID	Position	Salary (\$)
1	Manager	3500
2	Secretary	2200
3	Manager	3600
4	Technician	null
5	Technician	null
6	Secretary	2000

ID	Position	Salary (\$)
1	Manager	3500
2	Secretary	null
3	Manager	3600
4	Technician	null
5	Technician	2500
6	Secretary	null

<= 2400 missing

Basic Missing Value Imputation, cont.

- Basic Value Imputation (for MCAR)
 - General-purpose: replace by user-specified constant, or drop records, or one-hot encode as separate column
 - Continuous variables: replace by mean, median
 - Categorical variables: replace by mode (most frequent category)
- Iterative Algorithms (chained-equation imputation for MAR)
 - Train ML model on available data to predict missing information
 - Initialize with basic imputation (e.g., mean)
 - One dirty variable at a time
 - Feature k → label, split data into training: observed / scoring: missing
 - Types: categorical → classification, continuous → regression

[Stef van Buuren, Karin Groothuis-Oudshoorn: mice: Multivariate Imputation by Chained Equations in R, J. of Stat. Software 2011]

James of Jackiel Schware
nie Nationie Inputsio is Chief
and the second second

Noise reduction: train models over feature subsets + averaging

Basic Missing Value Imputation, cont.

- MICE example
 - Initialization: fill in the missing values with column mean (w/ or w/o NAs)
 - Iterations: each column per iteration

V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	NA	0	0	2
2	24	-1	2	NA
NA	22	1	2	0

V3

-1

V4

V5

0.8

V2

V1

1.2

V1	V2	V3	V4	V5
1	56	2	2	2
2	23	0	0	0
1	25	0	0	2
2	24	-1	2	0.8
1.2	22	1	2	0
train(y)	tra	in(x)	
₩			•	
↓ V1	V2	V3	V4	V5
↓ V1 1	V2 56	V3 2	<mark>V4</mark> 2	V5 2
↓ V1 1 2	V2 56 23	V3 2 0	V4 2 0	V5 2 0
↓ V1 1 2 1	V2 56 23 25	V3 2 0 0	V4 2 0 0	V5 2 0 2
↓ V1 1 2 1 2 2	V2 56 23 25 24	V3 2 0 0 -1	V4 2 0 0 2	V5 2 0 2 0.8

⊢	test	(x)
		`

ISDS

706.520 Data Integration and Large-Scale Analysis – 06 Data Cleanin
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

[Exam Feb 08, 2021]

BREAK (and Test Yourself)

Α	В	С	D	${f E}$
Red	2100	Х	DE	35
Orange	4300	NULL	DE	NULL
Yellow	5700	Ζ	DE	35
Green	2500	Х	AT	25
Blue	4900	Y	US	NULL
Violet	5200	NULL	US	45

Two techniques for MVI in the categorical column C.
 If possible, provide the imputed values (6 points)

- Mode
- Functional Dependency (e.g., B/1000→C)
- ML (Classification)
- Two techniques for MVI in the numerical column E.
 If possible, provide the imputed values (6 points)
 - Mean
 - Functional Dependency (e.g., $D \rightarrow E$)
 - ML (Regression)

→ {35, 35}
→ {35, 45}

DNN Based MV Imputation

DataWig

Missing values imputation for heterogeneous data including unstructured text

Imputation of attribute color

[Felix Bießmann et al: DataWig: Missing Value Imputation for Tables, J. of ML Research 2019]

Query Planning w/ MV Imputation

Dynamic Imputation

- Data exploration w/ on-the-fly imputation
- Optimal placement of drop δ and impute μ (chained-equation imputation via decision trees)
- Multi-objective optimization

XGBoost's Sparsity-aware Split Finding

Motivation

- Missing values
- Sparsity in general (zero values, one-hot encoding)

XGBoost

- Implementation of gradient boosted decision trees
- Multi-threaded, cache-conscious

Sparsity-aware Split Finding

- Handles the missing values by default paths (learned from data)
- An example will be classified into the default direction when the feature needed for the split is missing

[Tianqi Chen and Charlos Guestrin: XGBoost: A Scalable Tree Boosting System, **KDD 2016**]

Example	Age	Gender	
X1	?	male	
X2	15	?	
X3	25	female	

Time Series Imputation

[Steffen Moritz and Thomas Bartz-Beielstein: imputeTS: Time Series Missing Value Imputation in R, The R Journal 2017]

impetitive from New York New	den Minsing Vo	that .
	20000	100
		and the
18 creation		
Water and the state		10.75
		63

Example R Package imputeTS

Function	Option	Description
na.interpolation		
	linear	Imputation by Linear Interpolation
	spline	Imputation by Spline Interpolation
	stine	Imputation by Stineman Interpolation
na.kalman		
	StructTS	Imputation by Structural Model & Kalman Smoothing
1	auto.arima	Imputation by ARIMA State Space Representation & Kalman Sm.
na.locf	1 (
	loct	Imputation by Last Observation Carried Forward
	nocb	Imputation by Next Observation Carried Backward
na.ma	simple	Missing Value Imputation by Simple Moving Average
	linear	Missing Value Imputation by Linear Weighted Moving Average
	exponential	Missing Value Imputation by Exponential Weighted Moving Average
na mean	exponential	wissing value imputation by Exponential Weighted Moving Average
manneun	mean	MissingValue Imputation by Mean Value
	median	Missing Value Imputation by Median Value
	mode	Missing Value Imputation by Mode Value
na.random		Missing Value Imputation by Random Sample
na.replace		Replace Missing Values by a Defined Value

Summary and Q&A

- Motivation and Terminology
- Data Cleaning and Fusion
- Missing Value Imputation
- Next Lectures (Part B)
 - 08 Cloud Computing Foundations [Nov 17]