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Announcement

▪ Submissions are open in the TeachCenter

▪ Exam registration is open

▪ Course Evaluation is open
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Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine 
Learning Systems

Compute/
Storage

Infra
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Agenda

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity
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Motivation, Terminology, and 
Fundamentals
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Recap: Motivation Cloud Computing, cont.

▪ Argument #1: Pay as you go

▪ No upfront cost for infrastructure

▪ Variable utilization ➔ over-provisioning

▪ Pay per use or acquired resources

▪ Argument #2: Economies of Scale

▪ Purchasing and managing IT infrastructure at scale ➔ lower cost
(applies to both HW resources and IT infrastructure/system experts)

▪ Focus on scale-out on commodity HW over scale-up ➔ lower cost

▪ Argument #3: Elasticity

▪ Assuming perfect scalability, work done 
in constant time * resources 

▪ Given virtually unlimited resources
allows to reduce time as necessary

Motivation, Terminology, and Fundamentals

Utili-
zation

Time

100%

100 days @ 1 node

≈
1 day @ 100 nodes

(but beware Amdahl’s law: 
max speedup sp = 1/s)
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Overview Resource Management & Scheduling

▪ Resource Bundles

▪ Logical containers (aka nodes/instances) of different resources (vcores, mem)

▪ Disk capacity, disk and network bandwidth

▪ Accelerator devices (GPUs, FPGAs), etc

▪ Resource Management

Motivation, Terminology, and Fundamentals

Resource 
Selection

Resource 
Allocation

Resource 
Isolation & 
Monitoring

Task 
Scheduling 

4x m5.large 
(2vCPU, 8GB Mem)

12/48GB 10/12 vc

2

8

Scheduling is a fundamental 
computer science technique 

(at many different levels)
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Recap: Apache Spark History and Architecture

▪ High-Level Architecture

▪ Different language bindings:
Scala, Java, Python, R

▪ Different libraries:
SQL, ML, Stream, Graph

▪ Spark core (incl RDDs)

▪ Different file systems/
formats, and data sources:
HDFS, S3, DBs, NoSQL

▪ Different cluster managers:
Standalone, Mesos, 
Yarn, Kubernetes

➔ Separation of concerns: 
resource allocation vs task scheduling

Motivation, Terminology, and Fundamentals

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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Scheduling Problems

▪ Bag-of-Tasks Scheduling

▪ Job of independent (embarrassingly parallel) tasks

▪ Examples: EC2 instances, map tasks

▪ Gang Scheduling

▪ Job of frequently communicating parallel tasks

▪ Examples: MPI programs, parameter servers

▪ DAG Scheduling 

▪ Job of tasks with precedence constraints
(e.g., data dependencies)

▪ Examples: Op scheduling Spark, TensorFlow, SystemDS

▪ Real-Time Scheduling 

▪ Job or task with associated deadline (soft/hard)

▪ Examples: rendering, car control

Motivation, Terminology, and Fundamentals

Bs

A

[Eleni D. Karatza: Cloud Performance 
Resource Allocation and Scheduling Issue, 
Aristotle University of Thessaloniki 2018]
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Basic Scheduling Metrics and Algorithms

▪ Common Metrics

▪ Mean time to completion (total runtime for job), and 
max-stretch (completion/work – relative slowdown)

▪ Mean response time (job waiting time for resources)

▪ Throughput (jobs per time unit)

▪ #1 FIFO (first-in, first-out)

▪ Simple queueing and processing in order 

▪ Problem: Single long-running job can stall many short jobs

▪ #2 SJF (shortest job first)

▪ Sort jobs by expected runtime and execute in order ascending

▪ Problem: Starvation of long-running jobs

▪ #3 Round-Robin (FAIR)

▪ Allocate similar time (tasks, time slices) to all jobs

Motivation, Terminology, and Fundamentals
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Resource Allocation, Isolation, and 
Monitoring
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Resource Selection

▪ #1 Manual Selection

▪ Rule of thumb (I/O, mem, CPU characteristics of app)

▪ Data characteristics, and framework configurations, experience

▪ Example Spark Submit

Resource Allocation, Isolation, and Monitoring

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server –Xms40g –Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args …
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Resource Selection, cont.

▪ #2 Application-Agnostic, Reactive

▪ Dynamic allocation based on workload characteristics

▪ Examples: Spark dynamic allocation, Databricks AutoScaling

▪ #3 Application-Aware, Proactive

▪ Estimate time/costs of job under 
different configurations (what-if)

▪ Min $costs under time constraint

▪ Min runtime under $cost constraint 

Resource Allocation, Isolation, and Monitoring

(fixed MR job w/ 6 nodes)

[Herodotos Herodotou, Fei Dong, 
Shivnath Babu: No one (cluster) size 
fits all: automatic cluster sizing for 
data-intensive analytics. SoCC 2011]
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Resource Negotiation and Allocation

▪ Problem Formulation

▪ N nodes with memory and CPU constraints 

▪ Stream of jobs with memory and CPU requirements

▪ Assign jobs to nodes (or to minimal number of nodes)

➔ Knapsack problem (bin packing problem)

▪ In Practice: Heuristics

▪ Major concern: scheduling efficiency (online, cluster bottleneck)

▪ Approach: Sample queues, best/next-fit selection

▪ Multiple metrics: dominant resource calculator

Resource Allocation, Isolation, and Monitoring

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

“Tetris Analogy”
(w/ expiration and 

queues)

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
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Slurm Workload Manager

▪ Slurm Overview

▪ Simple Linux Utility for Resource Management (SLURM)

▪ Heavily used in HPC clusters (e.g., MPI gang scheduling)

▪ Scheduler Design

▪ Allocation/placement of requested resources

▪ Considers nodes, sockets, cores, HW threads, 
memory, GPUs, file systems, SW licenses

▪ Job submit options: sbatch (async job script), salloc (interactive), 
srun (sync job submission and scheduling) 

▪ Configuration: cluster, node count (ranges), task count, mem, etc

▪ Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core
mem, mem-per-cpu, mincpus, tmp min-disk-space

▪ Elasticity via re-queueing

Resource Allocation, Isolation, and Monitoring

[Don Lipari: The SLURM 
Scheduler Design, User 
Group Meeting, 2012]
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Background: Hadoop JobTracker (anno 2012)

▪ Overview

▪ Hadoop cluster w/ fixed configuration of n map slots, m reduce slots
(fixed number and fixed memory config map/reduce tasks)

▪ JobTracker schedules map and reduce tasks to slots

▪ FIFO and FAIR schedulers, account for data locality

▪ Data Locality

▪ Levels: data local, rack local, different rack

▪ Delay scheduling (with FAIR scheduler)
wait 1-3s for data local slot

▪ Problem

▪ Intermixes resource allocation and task scheduling
→ Scalability problems in large clusters

▪ Forces every application into MapReduce programming model

Resource Allocation, Isolation, and Monitoring

[Matei Zaharia et al: Delay 
scheduling: a simple technique for 

achieving locality and fairness in 
cluster scheduling. EuroSys 2010]
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Mesos Resource Management 

▪ Overview Mesos

▪ Fine-grained, multi-framework cluster sharing

▪ Scalable and efficient scheduling → delegated to frameworks

▪ Resource offers

Resource Allocation, Isolation, and Monitoring

[Benjamin Hindman et al: 
Mesos: A Platform for Fine-

Grained Resource Sharing in 
the Data Center. NSDI 2011]
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Mesos Resource Management, cont.

▪ Resource Offers

▪ Mesos master decides how many resources to offer 

▪ Framework scheduler decides which offered resources to accept/reject

▪ Challenge: long waiting times, lots of offers → filter specification

Resource Allocation, Isolation, and Monitoring

Reported 
available 
resources

Offered 
resources

Mesosphere 
Marathon: 
container 

orchestration
(e.g., Docker)
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YARN Resource Management

▪ Overview YARN

▪ Hadoop 2 decoupled resource scheduler (negotiator)

▪ Independent of programming model, multi-framework cluster sharing

▪ Resource Requests

Resource Allocation, Isolation, and Monitoring

Task Scheduling via 
Application Masters 

(AMs)

Resource 
Isolation via 

Node Managers 

Resource 
Scheduling via 

Resource Manager

[Vinod Kumar Vavilapalli et al: 
Apache Hadoop YARN: yet another 

resource negotiator. SoCC 2013]
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YARN Resource Management, cont.

▪ Capacity Scheduler

▪ Hierarchy of queues w/ shared resource among sub queues

▪ Soft (and optional hard) [min, max] constraints of max resources

▪ Default queue-user mapping

▪ No preemption during runtime
(only redistribution over queues)

▪ Fair Scheduler

▪ All applications get same resources over time

▪ Fairness decisions on memory requirements,
but dominant resource fairness possible too

Resource Allocation, Isolation, and Monitoring

root

data science

indexing



21

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling 
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Kubernetes Container Orchestration

▪ Overview Kubernetes

▪ Open-source system for automating, deployment, and 
management of containerized applications

▪ Container: resource isolation and application image

▪ System Architecture

▪ Pod: 1 or more containers
w/ individual IP

▪ Kubelet: node manager

▪ Controller: app master

▪ API Server + Scheduler

▪ Namespaces, quotas, 
access control, auth.,
logging & monitoring

▪ Wide variety of applications

Task Scheduling and Elasticity

➔ from machine- to 
application-oriented 

scheduling 

[https://kubernetes.io/docs/concepts/
overview/components/]

KV Store

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/


22

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling 
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Kubernetes Container Orchestration, cont.

▪ Pod Scheduling (Placement)

▪ Default scheduler: kube-scheduler, custom schedulers possible

▪ #1 Filtering: finding feasible nodes for pod 
(resources, free ports, node selector, requested volumes, mem/disk pressure)

▪ #2 Scoring: score feasible nodes → select highest score
(spread priority, inter-pod affinity, requested priority, image locality)

▪ Tuning: # scored nodes:  max(50, percentageOfNodesToScore [1,100])

(sample taken round robin across zones) 

➔ Binding: scheduler notifies API server

Task Scheduling and Elasticity
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Resource Isolation

▪ Overview Key Primitives

▪ Platform-dependent resource isolation primitives → container runtime

▪ Linux namespaces: restricting visibility

▪ Linux cgroups: restricting usage

▪ Cgroups (Control Groups)

▪ Developed by Google engineers → Kernel 2.6.24 (2008)

▪ Resource metering and limiting
(memory, CPU, block I/O, network)

▪ Each subsystem has a hierarchy (tree)  
with each node = group of processes

▪ Soft and hard limits on groups

▪ Mem hard limit → triggers OOM killer (physical, kernel, total)

▪ CPU→ set weights (time slices)/no limits, cpuset to pin groups to CPUs

Resource Allocation, Isolation, and Monitoring

Linux Containers
(e.g., basis of Docker)

[Jérôme Petazzoni: Cgroups, name-
spaces and beyond: What are containers 

made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-
N34im8&feature=youtu.be] 

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
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Task Scheduling and Elasticity
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Task Scheduling Overview

▪ Problem Formulation

▪ Given computation job and set of resources (servers, threads)

▪ Distribute job in pieces across resources 

▪ #1 Job-Task Partitioning 

▪ Split job into sequence of N tasks 

▪ #2 Task Placement / Execution

▪ Assign tasks to K resources for execution

▪ Goal: Min Job Completion Time

▪ Beware: Max runtime per resource
determines job completion time

Task Scheduling and Elasticity

Node 1 Node 2

t1 t2 t3 t4 t5 t6

Computation Job

t1 t2 t3 t5

t4 t6

Node 1:

Node 2:

Job 
done
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Task Scheduling – Partitioning 

▪ Static Partitioning

▪ M = K tasks, task size ceil(N/K)

▪ Low overhead, poor load balance

▪ Fixed Partitioning

▪ M = N/d tasks, task size d 

▪ E.g., # iterations, # tuples to process

▪ Self-Scheduling

▪ Exponentially decreasing task sizes d 
→M = log N tasks  (w/ min task size)

▪ Low overhead and good load balance at end

▪ Guided self scheduling

▪ Factoring: waves of task w/ equal size

Task Scheduling and Elasticity

Example Hyper-param Tuning
parfor(i in 1:800)
R[i,] = lm(X,y,reg[i])

400

400

100 100 100100

100 100

100

100

200

100200

100 50

50

50

50

[Susan Flynn Hummel, Edith Schonberg, 
Lawrence E. Flynn: Factoring: a 

practical and robust method for 
scheduling parallel loops. SC 1991]
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Task Scheduling – Placement 

▪ Task Queues

▪ Sequence of tasks in FIFO queue

▪ #1 Single Task Queue
(self-balancing, but contention)

▪ #2 Per-Worker Task Queue
(work separation, and preparation)

▪ Work Stealing

▪ On empty worker queue, probe other queues and “steal” tasks

▪ More common in multi-threading, difficult in distributed systems

▪ Excursus: Power of 2 Choices

▪ Choose d bins at random, task in least full bin

▪ Reduce max load from 
log 𝑀

log log 𝑀
to 

log log 𝑀

log𝑀

Task Scheduling and Elasticity

Node 
1

Node 
2

“Airport”

Node 
1

Node 
2

“Super Market”

[Michael D. Mitzenmacher: 
The Power of Two Choices in 
Randomized Load Balancing, 

PhD Thesis UC Berkeley 1996]
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Spark Task Scheduling, cont.  

▪ Fair Scheduler 
Configuration

▪ Pools with shares of cluster

▪ Scheduling modes: FAIR, FIFO

▪ weight: relative to equal share

▪ minShare: min numCores

▪ Spark on Kubernetes

▪ Run Spark in shared cluster 
with Docker container apps,
Distributed TensorFlow, etc

▪ Custom controller, and
shuffle service (dynAlloc)

Task Scheduling and Elasticity

<allocations>
<pool name=“data_science">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>6</minShare>

</pool>
<pool name=“indexing">
<schedulingMode>FIFO</schedulingMode>
<weight>2</weight>
<minShare>8</minShare>

</pool>
</allocations>

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-api>:<k8s-api-port> \
--deploy-mode cluster
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
--conf spark.kubernetes.container.image=<sparkimg> \
SystemDS.jar -f test.dml -stats -explain -args …
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Spark Dynamic Allocation 

▪ Configuration for YARN/Mesos

▪ Set spark.dynamicAllocation.enabled = true

▪ Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

▪ Executor Addition/Removal

▪ Approach: look at task pressure (pending tasks / idle executors)

▪ Increase exponentially (add 1, 2, 4, 8) if 
pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

▪ Decrease executors they are idle for 
spark.dynamicAllocation.executorIdleTimeout

Task Scheduling and Elasticity

[https://spark.apache.org/docs/
latest/job-scheduling.html]

https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
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Resource Elasticity in SystemML

▪ Basic Ideas
▪ Optimize ML program resource configurations via online what-if analysis 

▪ Generating and costing runtime plans for local/MR

▪ Program-aware grid enumeration, pruning, and re-optimization techniques 

Task Scheduling and Elasticity

[Botong Huang et al.: 
Resource Elasticity for 

Large-Scale Machine 
Learning. SIGMOD 2015]

Min runtime w/o 
unnecessary 

over-allocation
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Summary and Q&A

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

▪ Next Lectures 

▪ 10 Distributed Data Storage [Dec 15]


	Slide 1: Data Integration and Large Scale Analysis 08 Cloud Resource Management
	Slide 2: Announcement
	Slide 3: Course Outline Part B: Large-Scale Data Management and Analysis
	Slide 4: Agenda
	Slide 5: Motivation, Terminology, and Fundamentals
	Slide 6: Recap: Motivation Cloud Computing, cont.
	Slide 7: Overview Resource Management & Scheduling
	Slide 8: Recap: Apache Spark History and Architecture
	Slide 9: Scheduling Problems
	Slide 10: Basic Scheduling Metrics and Algorithms
	Slide 11: Resource Allocation, Isolation, and Monitoring
	Slide 12: Resource Selection
	Slide 13: Resource Selection, cont.
	Slide 14: Resource Negotiation and Allocation
	Slide 15: Slurm Workload Manager
	Slide 16: Background: Hadoop JobTracker (anno 2012)
	Slide 17: Mesos Resource Management 
	Slide 18: Mesos Resource Management, cont.
	Slide 19: YARN Resource Management
	Slide 20: YARN Resource Management, cont.
	Slide 21: Kubernetes Container Orchestration
	Slide 22: Kubernetes Container Orchestration, cont.
	Slide 23: Resource Isolation
	Slide 24: Task Scheduling and Elasticity
	Slide 25: Task Scheduling Overview
	Slide 26: Task Scheduling – Partitioning 
	Slide 27: Task Scheduling – Placement 
	Slide 28: Spark Task Scheduling, cont.  
	Slide 29: Spark Dynamic Allocation 
	Slide 30: Resource Elasticity in SystemML
	Slide 31: Summary and Q&A

