
1
SCIENCE
PASSION

TECHNOLOGY

Data Integration and Large Scale Analysis
08 Cloud Resource Management

Shafaq Siddiqi

Graz University of Technology, Austria

Last update: Dec 01, 2023

Slides Credit: Matthias Boehm

2

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Announcement

▪ Submissions are open in the TeachCenter

▪ Exam registration is open

▪ Course Evaluation is open

3

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Course Outline Part B:
Large-Scale Data Management and Analysis

08 Cloud Computing Fundamentals

09 Cloud Resource Management and Scheduling

10 Distributed Data Storage

11 Distributed Data-Parallel Computation

12 Distributed Stream
Processing

13 Distributed Machine
Learning Systems

Compute/
Storage

Infra

4

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Agenda

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

5

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Motivation, Terminology, and
Fundamentals

6

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Recap: Motivation Cloud Computing, cont.

▪ Argument #1: Pay as you go

▪ No upfront cost for infrastructure

▪ Variable utilization ➔ over-provisioning

▪ Pay per use or acquired resources

▪ Argument #2: Economies of Scale

▪ Purchasing and managing IT infrastructure at scale ➔ lower cost
(applies to both HW resources and IT infrastructure/system experts)

▪ Focus on scale-out on commodity HW over scale-up ➔ lower cost

▪ Argument #3: Elasticity

▪ Assuming perfect scalability, work done
in constant time * resources

▪ Given virtually unlimited resources
allows to reduce time as necessary

Motivation, Terminology, and Fundamentals

Utili-
zation

Time

100%

100 days @ 1 node

≈
1 day @ 100 nodes

(but beware Amdahl’s law:
max speedup sp = 1/s)

7

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Overview Resource Management & Scheduling

▪ Resource Bundles

▪ Logical containers (aka nodes/instances) of different resources (vcores, mem)

▪ Disk capacity, disk and network bandwidth

▪ Accelerator devices (GPUs, FPGAs), etc

▪ Resource Management

Motivation, Terminology, and Fundamentals

Resource
Selection

Resource
Allocation

Resource
Isolation &
Monitoring

Task
Scheduling

4x m5.large
(2vCPU, 8GB Mem)

12/48GB 10/12 vc

2

8

Scheduling is a fundamental
computer science technique

(at many different levels)

8

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Recap: Apache Spark History and Architecture

▪ High-Level Architecture

▪ Different language bindings:
Scala, Java, Python, R

▪ Different libraries:
SQL, ML, Stream, Graph

▪ Spark core (incl RDDs)

▪ Different file systems/
formats, and data sources:
HDFS, S3, DBs, NoSQL

▪ Different cluster managers:
Standalone, Mesos,
Yarn, Kubernetes

➔ Separation of concerns:
resource allocation vs task scheduling

Motivation, Terminology, and Fundamentals

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/

9

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Scheduling Problems

▪ Bag-of-Tasks Scheduling

▪ Job of independent (embarrassingly parallel) tasks

▪ Examples: EC2 instances, map tasks

▪ Gang Scheduling

▪ Job of frequently communicating parallel tasks

▪ Examples: MPI programs, parameter servers

▪ DAG Scheduling

▪ Job of tasks with precedence constraints
(e.g., data dependencies)

▪ Examples: Op scheduling Spark, TensorFlow, SystemDS

▪ Real-Time Scheduling

▪ Job or task with associated deadline (soft/hard)

▪ Examples: rendering, car control

Motivation, Terminology, and Fundamentals

Bs

A

[Eleni D. Karatza: Cloud Performance
Resource Allocation and Scheduling Issue,
Aristotle University of Thessaloniki 2018]

10

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Basic Scheduling Metrics and Algorithms

▪ Common Metrics

▪ Mean time to completion (total runtime for job), and
max-stretch (completion/work – relative slowdown)

▪ Mean response time (job waiting time for resources)

▪ Throughput (jobs per time unit)

▪ #1 FIFO (first-in, first-out)

▪ Simple queueing and processing in order

▪ Problem: Single long-running job can stall many short jobs

▪ #2 SJF (shortest job first)

▪ Sort jobs by expected runtime and execute in order ascending

▪ Problem: Starvation of long-running jobs

▪ #3 Round-Robin (FAIR)

▪ Allocate similar time (tasks, time slices) to all jobs

Motivation, Terminology, and Fundamentals

11

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Allocation, Isolation, and
Monitoring

12

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Selection

▪ #1 Manual Selection

▪ Rule of thumb (I/O, mem, CPU characteristics of app)

▪ Data characteristics, and framework configurations, experience

▪ Example Spark Submit

Resource Allocation, Isolation, and Monitoring

export HADOOP_CONF_DIR=/etc/hadoop/conf
SPARK_HOME=../spark-2.4.0-bin-hadoop2.7

$SPARK_HOME/bin/spark-submit \
--master yarn --deploy-mode client \
--driver-java-options "-server –Xms40g –Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
SystemDS.jar -f test.dml -stats -explain -args …

13

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Selection, cont.

▪ #2 Application-Agnostic, Reactive

▪ Dynamic allocation based on workload characteristics

▪ Examples: Spark dynamic allocation, Databricks AutoScaling

▪ #3 Application-Aware, Proactive

▪ Estimate time/costs of job under
different configurations (what-if)

▪ Min $costs under time constraint

▪ Min runtime under $cost constraint

Resource Allocation, Isolation, and Monitoring

(fixed MR job w/ 6 nodes)

[Herodotos Herodotou, Fei Dong,
Shivnath Babu: No one (cluster) size
fits all: automatic cluster sizing for
data-intensive analytics. SoCC 2011]

14

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Negotiation and Allocation

▪ Problem Formulation

▪ N nodes with memory and CPU constraints

▪ Stream of jobs with memory and CPU requirements

▪ Assign jobs to nodes (or to minimal number of nodes)

➔ Knapsack problem (bin packing problem)

▪ In Practice: Heuristics

▪ Major concern: scheduling efficiency (online, cluster bottleneck)

▪ Approach: Sample queues, best/next-fit selection

▪ Multiple metrics: dominant resource calculator

Resource Allocation, Isolation, and Monitoring

[https://blog.cloudera.com/
managing-cpu-resources-in-
your-hadoop-yarn-clusters/]

12/48GB

2/8GB1/32GB6/8GB 32GB

8GB

8GB
6

1
2

“Tetris Analogy”
(w/ expiration and

queues)

https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/
https://blog.cloudera.com/managing-cpu-resources-in-your-hadoop-yarn-clusters/

15

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Slurm Workload Manager

▪ Slurm Overview

▪ Simple Linux Utility for Resource Management (SLURM)

▪ Heavily used in HPC clusters (e.g., MPI gang scheduling)

▪ Scheduler Design

▪ Allocation/placement of requested resources

▪ Considers nodes, sockets, cores, HW threads,
memory, GPUs, file systems, SW licenses

▪ Job submit options: sbatch (async job script), salloc (interactive),
srun (sync job submission and scheduling)

▪ Configuration: cluster, node count (ranges), task count, mem, etc

▪ Constraints via filters: sockets-per-node, cores-per-socket, threads-per-core
mem, mem-per-cpu, mincpus, tmp min-disk-space

▪ Elasticity via re-queueing

Resource Allocation, Isolation, and Monitoring

[Don Lipari: The SLURM
Scheduler Design, User
Group Meeting, 2012]

16

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Background: Hadoop JobTracker (anno 2012)

▪ Overview

▪ Hadoop cluster w/ fixed configuration of n map slots, m reduce slots
(fixed number and fixed memory config map/reduce tasks)

▪ JobTracker schedules map and reduce tasks to slots

▪ FIFO and FAIR schedulers, account for data locality

▪ Data Locality

▪ Levels: data local, rack local, different rack

▪ Delay scheduling (with FAIR scheduler)
wait 1-3s for data local slot

▪ Problem

▪ Intermixes resource allocation and task scheduling
→ Scalability problems in large clusters

▪ Forces every application into MapReduce programming model

Resource Allocation, Isolation, and Monitoring

[Matei Zaharia et al: Delay
scheduling: a simple technique for

achieving locality and fairness in
cluster scheduling. EuroSys 2010]

17

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Mesos Resource Management

▪ Overview Mesos

▪ Fine-grained, multi-framework cluster sharing

▪ Scalable and efficient scheduling → delegated to frameworks

▪ Resource offers

Resource Allocation, Isolation, and Monitoring

[Benjamin Hindman et al:
Mesos: A Platform for Fine-

Grained Resource Sharing in
the Data Center. NSDI 2011]

18

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Mesos Resource Management, cont.

▪ Resource Offers

▪ Mesos master decides how many resources to offer

▪ Framework scheduler decides which offered resources to accept/reject

▪ Challenge: long waiting times, lots of offers → filter specification

Resource Allocation, Isolation, and Monitoring

Reported
available
resources

Offered
resources

Mesosphere
Marathon:
container

orchestration
(e.g., Docker)

19

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

YARN Resource Management

▪ Overview YARN

▪ Hadoop 2 decoupled resource scheduler (negotiator)

▪ Independent of programming model, multi-framework cluster sharing

▪ Resource Requests

Resource Allocation, Isolation, and Monitoring

Task Scheduling via
Application Masters

(AMs)

Resource
Isolation via

Node Managers

Resource
Scheduling via

Resource Manager

[Vinod Kumar Vavilapalli et al:
Apache Hadoop YARN: yet another

resource negotiator. SoCC 2013]

20

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

YARN Resource Management, cont.

▪ Capacity Scheduler

▪ Hierarchy of queues w/ shared resource among sub queues

▪ Soft (and optional hard) [min, max] constraints of max resources

▪ Default queue-user mapping

▪ No preemption during runtime
(only redistribution over queues)

▪ Fair Scheduler

▪ All applications get same resources over time

▪ Fairness decisions on memory requirements,
but dominant resource fairness possible too

Resource Allocation, Isolation, and Monitoring

root

data science

indexing

21

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Kubernetes Container Orchestration

▪ Overview Kubernetes

▪ Open-source system for automating, deployment, and
management of containerized applications

▪ Container: resource isolation and application image

▪ System Architecture

▪ Pod: 1 or more containers
w/ individual IP

▪ Kubelet: node manager

▪ Controller: app master

▪ API Server + Scheduler

▪ Namespaces, quotas,
access control, auth.,
logging & monitoring

▪ Wide variety of applications

Task Scheduling and Elasticity

➔ from machine- to
application-oriented

scheduling

[https://kubernetes.io/docs/concepts/
overview/components/]

KV Store

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

22

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Kubernetes Container Orchestration, cont.

▪ Pod Scheduling (Placement)

▪ Default scheduler: kube-scheduler, custom schedulers possible

▪ #1 Filtering: finding feasible nodes for pod
(resources, free ports, node selector, requested volumes, mem/disk pressure)

▪ #2 Scoring: score feasible nodes → select highest score
(spread priority, inter-pod affinity, requested priority, image locality)

▪ Tuning: # scored nodes: max(50, percentageOfNodesToScore [1,100])

(sample taken round robin across zones)

➔ Binding: scheduler notifies API server

Task Scheduling and Elasticity

23

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Isolation

▪ Overview Key Primitives

▪ Platform-dependent resource isolation primitives → container runtime

▪ Linux namespaces: restricting visibility

▪ Linux cgroups: restricting usage

▪ Cgroups (Control Groups)

▪ Developed by Google engineers → Kernel 2.6.24 (2008)

▪ Resource metering and limiting
(memory, CPU, block I/O, network)

▪ Each subsystem has a hierarchy (tree)
with each node = group of processes

▪ Soft and hard limits on groups

▪ Mem hard limit → triggers OOM killer (physical, kernel, total)

▪ CPU→ set weights (time slices)/no limits, cpuset to pin groups to CPUs

Resource Allocation, Isolation, and Monitoring

Linux Containers
(e.g., basis of Docker)

[Jérôme Petazzoni: Cgroups, name-
spaces and beyond: What are containers

made from? DockerConEU 2015.]

[https://www.youtube.com/watch?v=sK5i-
N34im8&feature=youtu.be]

https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be
https://www.youtube.com/watch?v=sK5i-N34im8&feature=youtu.be

24

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Task Scheduling and Elasticity

25

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Task Scheduling Overview

▪ Problem Formulation

▪ Given computation job and set of resources (servers, threads)

▪ Distribute job in pieces across resources

▪ #1 Job-Task Partitioning

▪ Split job into sequence of N tasks

▪ #2 Task Placement / Execution

▪ Assign tasks to K resources for execution

▪ Goal: Min Job Completion Time

▪ Beware: Max runtime per resource
determines job completion time

Task Scheduling and Elasticity

Node 1 Node 2

t1 t2 t3 t4 t5 t6

Computation Job

t1 t2 t3 t5

t4 t6

Node 1:

Node 2:

Job
done

26

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Task Scheduling – Partitioning

▪ Static Partitioning

▪ M = K tasks, task size ceil(N/K)

▪ Low overhead, poor load balance

▪ Fixed Partitioning

▪ M = N/d tasks, task size d

▪ E.g., # iterations, # tuples to process

▪ Self-Scheduling

▪ Exponentially decreasing task sizes d
→M = log N tasks (w/ min task size)

▪ Low overhead and good load balance at end

▪ Guided self scheduling

▪ Factoring: waves of task w/ equal size

Task Scheduling and Elasticity

Example Hyper-param Tuning
parfor(i in 1:800)
R[i,] = lm(X,y,reg[i])

400

400

100 100 100100

100 100

100

100

200

100200

100 50

50

50

50

[Susan Flynn Hummel, Edith Schonberg,
Lawrence E. Flynn: Factoring: a

practical and robust method for
scheduling parallel loops. SC 1991]

27

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Task Scheduling – Placement

▪ Task Queues

▪ Sequence of tasks in FIFO queue

▪ #1 Single Task Queue
(self-balancing, but contention)

▪ #2 Per-Worker Task Queue
(work separation, and preparation)

▪ Work Stealing

▪ On empty worker queue, probe other queues and “steal” tasks

▪ More common in multi-threading, difficult in distributed systems

▪ Excursus: Power of 2 Choices

▪ Choose d bins at random, task in least full bin

▪ Reduce max load from
log 𝑀

log log 𝑀
to

log log 𝑀

log𝑀

Task Scheduling and Elasticity

Node
1

Node
2

“Airport”

Node
1

Node
2

“Super Market”

[Michael D. Mitzenmacher:
The Power of Two Choices in
Randomized Load Balancing,

PhD Thesis UC Berkeley 1996]

28

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Spark Task Scheduling, cont.

▪ Fair Scheduler
Configuration

▪ Pools with shares of cluster

▪ Scheduling modes: FAIR, FIFO

▪ weight: relative to equal share

▪ minShare: min numCores

▪ Spark on Kubernetes

▪ Run Spark in shared cluster
with Docker container apps,
Distributed TensorFlow, etc

▪ Custom controller, and
shuffle service (dynAlloc)

Task Scheduling and Elasticity

<allocations>
<pool name=“data_science">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
<minShare>6</minShare>

</pool>
<pool name=“indexing">
<schedulingMode>FIFO</schedulingMode>
<weight>2</weight>
<minShare>8</minShare>

</pool>
</allocations>

$SPARK_HOME/bin/spark-submit \
--master k8s://https://<k8s-api>:<k8s-api-port> \
--deploy-mode cluster
--driver-java-options "-server -Xms40g -Xmn4g" \
--driver-memory 40g \
--num-executors 10 \
--executor-memory 100g \
--executor-cores 32 \
--conf spark.kubernetes.container.image=<sparkimg> \
SystemDS.jar -f test.dml -stats -explain -args …

29

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Spark Dynamic Allocation

▪ Configuration for YARN/Mesos

▪ Set spark.dynamicAllocation.enabled = true

▪ Set spark.shuffle.service.enabled = true (robustness w/ stragglers)

▪ Executor Addition/Removal

▪ Approach: look at task pressure (pending tasks / idle executors)

▪ Increase exponentially (add 1, 2, 4, 8) if
pending tasks for spark.dynamicAllocation.schedulerBacklogTimeout

▪ Decrease executors they are idle for
spark.dynamicAllocation.executorIdleTimeout

Task Scheduling and Elasticity

[https://spark.apache.org/docs/
latest/job-scheduling.html]

https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html

30

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Resource Elasticity in SystemML

▪ Basic Ideas
▪ Optimize ML program resource configurations via online what-if analysis

▪ Generating and costing runtime plans for local/MR

▪ Program-aware grid enumeration, pruning, and re-optimization techniques

Task Scheduling and Elasticity

[Botong Huang et al.:
Resource Elasticity for

Large-Scale Machine
Learning. SIGMOD 2015]

Min runtime w/o
unnecessary

over-allocation

31

706.520 Data Integration and Large-Scale Analysis – 08 Cloud Resource Management and Scheduling
Shafaq Siddiqi, Graz University of Technology, WS 2023/24

Summary and Q&A

▪ Motivation, Terminology, and Fundamentals

▪ Resource Allocation, Isolation, and Monitoring

▪ Task Scheduling and Elasticity

▪ Next Lectures

▪ 10 Distributed Data Storage [Dec 15]

	Slide 1: Data Integration and Large Scale Analysis 08 Cloud Resource Management
	Slide 2: Announcement
	Slide 3: Course Outline Part B: Large-Scale Data Management and Analysis
	Slide 4: Agenda
	Slide 5: Motivation, Terminology, and Fundamentals
	Slide 6: Recap: Motivation Cloud Computing, cont.
	Slide 7: Overview Resource Management & Scheduling
	Slide 8: Recap: Apache Spark History and Architecture
	Slide 9: Scheduling Problems
	Slide 10: Basic Scheduling Metrics and Algorithms
	Slide 11: Resource Allocation, Isolation, and Monitoring
	Slide 12: Resource Selection
	Slide 13: Resource Selection, cont.
	Slide 14: Resource Negotiation and Allocation
	Slide 15: Slurm Workload Manager
	Slide 16: Background: Hadoop JobTracker (anno 2012)
	Slide 17: Mesos Resource Management
	Slide 18: Mesos Resource Management, cont.
	Slide 19: YARN Resource Management
	Slide 20: YARN Resource Management, cont.
	Slide 21: Kubernetes Container Orchestration
	Slide 22: Kubernetes Container Orchestration, cont.
	Slide 23: Resource Isolation
	Slide 24: Task Scheduling and Elasticity
	Slide 25: Task Scheduling Overview
	Slide 26: Task Scheduling – Partitioning
	Slide 27: Task Scheduling – Placement
	Slide 28: Spark Task Scheduling, cont.
	Slide 29: Spark Dynamic Allocation
	Slide 30: Resource Elasticity in SystemML
	Slide 31: Summary and Q&A

