

Data Integration and Large Scale Analysis 12 Distributed ML Systems

Shafaq Siddiqi

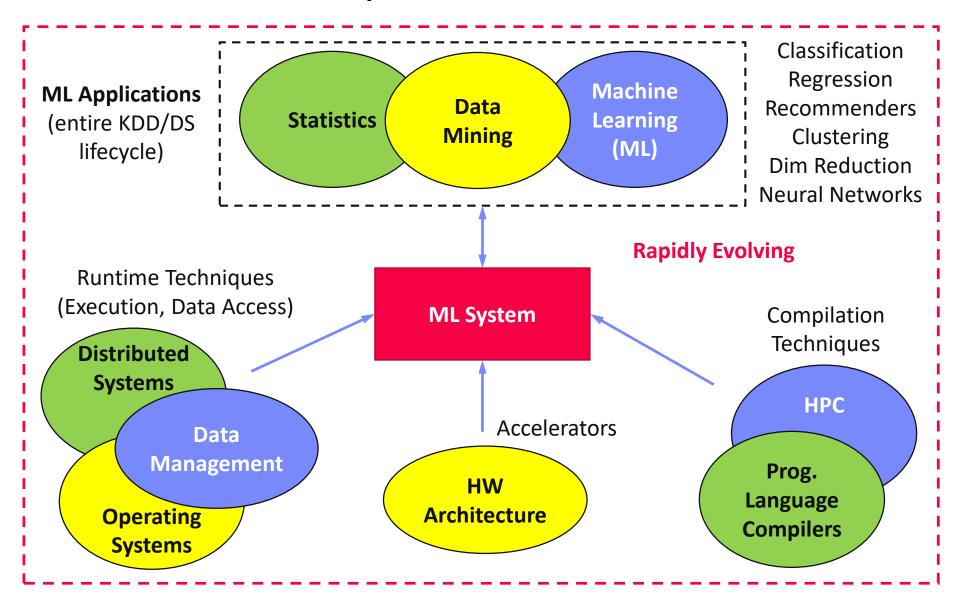
Graz University of Technology, Austria

Agenda

- Landscape of ML Systems
- Distributed Parameter Servers
- Large Language Models
- Q&A and Exam Preparation

Landscape of ML Systems

What is an ML System?



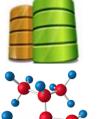
The Data Science Lifecycle

aka KDD Process aka CRISP-DM

Data Scientist

Data-centric View:

Application perspective Workload perspective System perspective



Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback

Exploratory Process

(experimentation, refinements, ML pipelines)

Driving Factors for ML

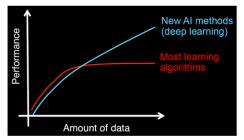
Improved Algorithms and Models

- Success across data and application domains
 (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

[Credit: Andrew Ng'14]



Feedback Loop

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks,
 ML systems, and vendor-provides libraries

Stack of ML Systems

Validation & Debugging

Deployment & Scoring

Hyper-parameter

Tuning

ML Apps & Algorithms

Training

Supervised, unsupervised, RL linear algebra, libs, AutoML

Model and Feature
Selection

Language Abstractions

Eager interpretation, lazy evaluation, prog. compilation

Data Programming & Augmentation

Fault Tolerance

Approximation, lineage, checkpointing, checksums, ECC

Data Preparation

(e.g., one-hot, binning)

Execution Strategies

Local, distributed, cloud (data, task, parameter server)

Data Representations

Dense & sparse tensor/matrix; compress, partition, cache

Data Integration & Data Cleaning

HW & Infrastructure

CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements

→ Specialization & Heterogeneity

Apps

Lang

Faults

Exec

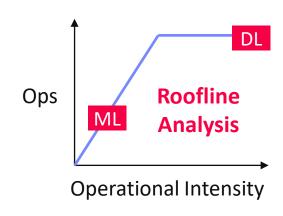
Data

HW

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute



Graphics Processing Units (GPUs)

- Extensively used for deep learning training and scoring
- NVIDIA Volta: "tensor cores" for 4x4 mm → 64 2B FMA instruction
- Field-Programmable Gate Arrays (FPGAs)
 - Customizable HW accelerators for prefiltering, compression, DL
 - Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)
- Application-Specific Integrated Circuits (ASIC)
 - Spectrum of chips: DL accelerators to computer vision
 - Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

Data Representation

ML- vs DL-centric Systems

- ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
- DL: mostly dense tensors, embeddings for NLP, graphs vec(Berlin) vec(Germany) + vec(France) ≈ vec(Paris)

Apps Lang Faults Exec

Data

HW

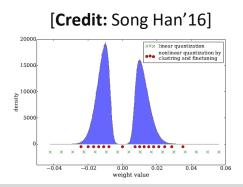
Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression

Node1 Node2

Lossy Compression → Acc/Perf-Tradeoff

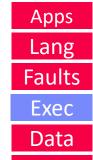
- Sparsification (reduce non-zero values)
- Quantization (reduce value domain), learned
- New data types: Intel Flexpoint (mantissa, exp)



Execution Strategies

Batch Algorithms: Data and Task Parallel

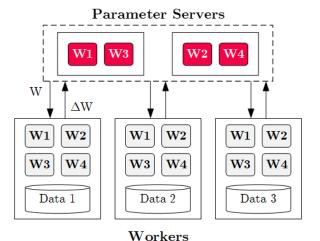
- Data-parallel operations
- Different physical operators



HW

Mini-Batch Algorithms: Parameter Server

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies
- Federated ML (trend 2018)



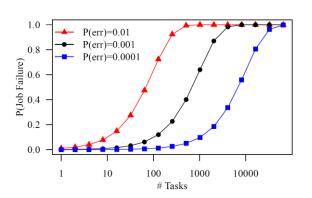
Lots of PS Decisions Acc/Perf-Tradeoff

- Configurations (#workers, batch size/param schedules, update type/freq)
- Transfer optimizations: lossy compression, sparsification, residual accumulation, layer-wise all-reduce, gradient clipping, momentum corrections

Fault Tolerance & Resilience

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need cost-effective resilience



Apps Lang Faults Exec Data HW

Fault Tolerance in Large-Scale Computation

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
- Lineage-based recomputation for recovery in Spark
- ML-specific Schemes (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Apps

Lang

Faults

Exec

Data

Language Abstractions

Optimization Scope

- **#1 Eager Interpretation** (debugging, no opt)
- #2 Lazy expression evaluation (some opt, avoid materialization)

NumPy

HW

#3 Program compilation (full opt, difficult)

PYTORCH

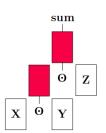
Apache **SystemDS**

Optimization Objective

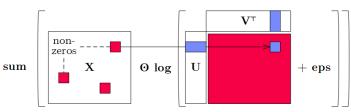
- Most common: min time s.t. memory constraints
- Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemDS, Weld, Taco, Julia, TF XLA, TVM, TensorRT



Sparsity-Exploiting Operator



Apps

Lang

Faults

Exec

Data

HW

ML Applications

ML Algorithms (cost/benefit – time vs acc)

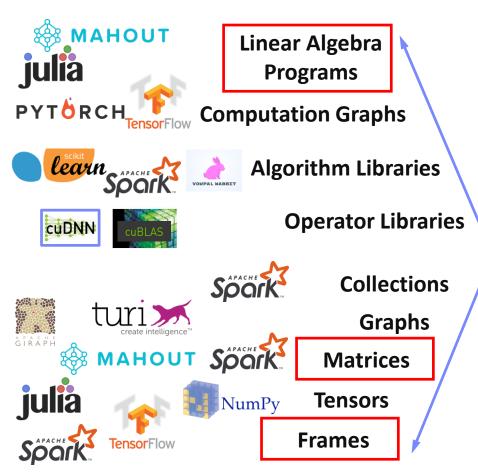
- Unsupervised/supervised; batch/mini-batch; first/second-order ML
- Mini-batch DL: variety of NN architectures and SGD optimizers
- Specialized Apps: Video Analytics in NoScope (time vs acc)
 - Difference detectors / specialized models for "short-circuit evaluation"

[Credit: Daniel Kang'17]

- AutoML (time vs acc)
 - Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 - Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 - AutoML services at Microsoft Azure, Amazon AWS, Google Cloud
- Data Programming and Augmentation (acc?)
 - Generate noisy labels for pre-training
 - Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

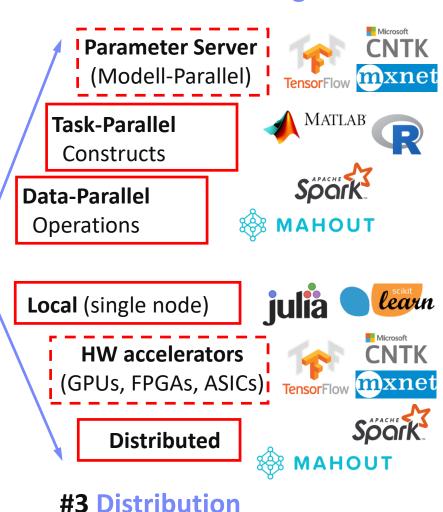
[**Credit:** Jonathan Tremblay'18]

Landscape of ML Systems



#4 Data Types

#2 Execution Strategies

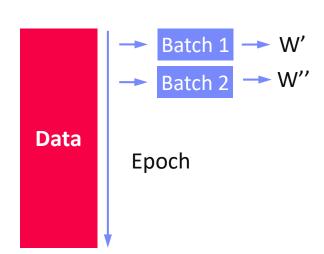


Distributed Parameter Servers

Background: Mini-batch ML Algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based
 ML algorithms (LDA, reg., class., factor., DNN)
- Stochastic Gradient Descent (SGD)
- Statistical vs Hardware Efficiency (batch size)
 - Statistical efficiency: # accessed data points to achieve certain accuracy
 - Hardware efficiency: number of independent computations to achieve high hardware utilization (parallelization at different levels)
 - Beware higher variance / class skew for too small batches!
- Training Mini-batch ML algorithms sequentially is hard to scale



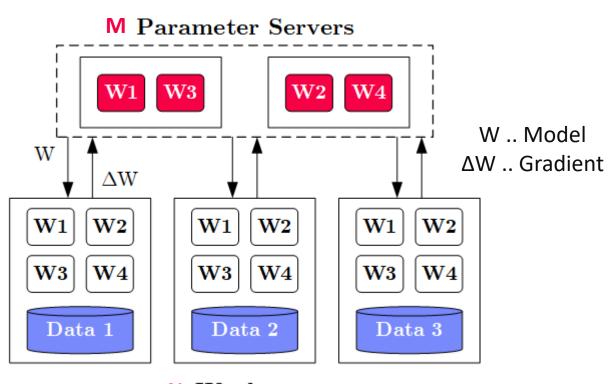
Background: Mini-batch DNN Training (LeNet)

```
[Yann LeCun, Leon Bottou, Yoshua
# Initialize W1-W4, b1-b4
                                                        Bengio, and Patrick Haffner: Gradient-
# Initialize SGD w/ Nesterov momentum optimizer
                                                         Based Learning Applied to Document
iters = ceil(N / batch size)
                                                           Recognition, Proc of the IEEE 1998]
for( e in 1:epochs ) {
   for( i in 1:iters ) {
     X batch = X[((i-1) * batch size) %% N + 1:min(N, beg + batch size - 1),]
     y batch = Y[((i-1) * batch size) %% N + 1:min(N, beg + batch size - 1),]
      ## layer 1: conv1 -> relu1 -> pool1
      ## layer 2: conv2 -> relu2 -> pool2
                                                                              NN Forward
      ## layer 3: affine3 -> relu3 -> dropout
      ## layer 4: affine4 -> softmax
                                                                                  Pass
      outa4 = affine::forward(outd3, W4, b4)
      probs = softmax::forward(outa4)
      ## layer 4: affine4 <- softmax</pre>
                                                                             NN Backward
      douta4 = softmax::backward(dprobs, outa4)
      [doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
                                                                                  Pass
      ## layer 3: affine3 <- relu3 <- dropout
                                                                             → Gradients
      ## layer 2: conv2 <- relu2 <- pool2
      ## layer 1: conv1 <- relu1 <- pool1
      # Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
                                                                                 Model
      [W4, vW4] = sgd nesterov::update(W4, dW4, lr, mu, vW4)
                                                                                Updates
      [b4, vb4] = sgd nesterov::update(b4, db4, lr, mu, vb4)
```


Overview Data-Parallel Parameter Servers

SystemArchitecture

- M ParameterServers
- N Workers
- Optional Coordinator



Key Techniques

- N Workers
- Data partitioning D → workers Di (e.g., disjoint, reshuffling)
- Updated strategies (e.g., synchronous, asynchronous)
- Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers

- 1st Gen: Key/Value
 - Distributed key-value store for parameter exchange and synchronization
 - Relatively high overhead
- 2nd Gen: Classic Parameter Servers
 - Parameters as dense/sparse matrices
 - Different update/consistency strategies
 - Flexible configuration and fault tolerance
- 3rd Gen: Parameter Servers w/ improved data communication
 - Prefetching and range-based pull/push
 - Lossy or lossless compression w/ compensations
- Examples
 - TensorFlow, MXNet, PyTorch, CNTK, Petuum

[Alexander J. Smola, Shravan M. Narayanamurthy: An Architecture for Parallel Topic Models. **PVLDB 2010**]

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

[Mu Li et al: Scaling Distributed Machine Learning with the Parameter Server. **OSDI 2014**]

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware Distributed Parameter Servers.

SIGMOD 2017]

[Jiawei Jiang et al: SketchML: Accelerating Distributed Machine Learning with Data Sketches.

SIGMOD 2018]

Basic Worker Algorithm (batch)

```
for( i in 1:epochs ) {
    for( j in 1:iterations ) {
        params = pullModel(); # W1-W4, b1-b4 lr, mu
        batch = getNextMiniBatch(data, j);
        gradient = computeGradient(batch, params);
        pushGradients(gradient);
    }
}
```

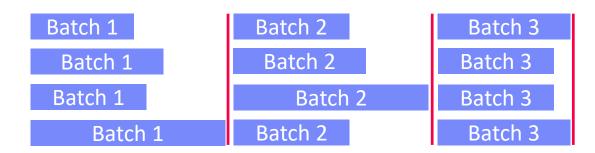
[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

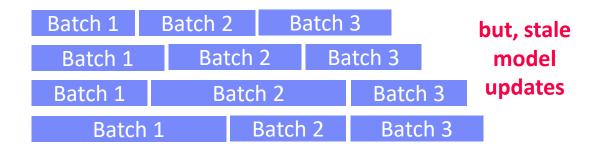
Extended Worker Algorithm (nfetch batches)

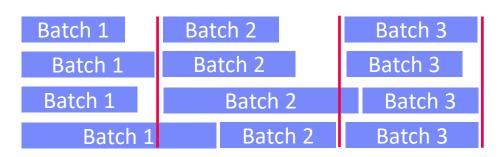
```
gradientAcc = matrix(0,...);
                                                 nfetch batches require
                                               local gradient accrual and
for( i in 1:epochs ) {
                                                  local model update
   for( j in 1:iterations ) {
      if( step mod nfetch = 0 )
          params = pullModel();
      batch = getNextMiniBatch(data, j);
      gradient = computeGradient(batch, params);
      gradientAcc += gradient;
      params = updateModel(params, gradients);
      if( step mod nfetch = 0 ) {
          pushGradients(gradientAcc); step = 0;
          gradientAcc = matrix(0, ...);
                                              [Jeffrey Dean et al.: Large Scale
                                                 Distributed Deep Networks.
      step++;
                                                           NIPS 2012
```


Update Strategies

- Bulk Synchronous Parallel (BSP)
 - Update model w/ accrued gradients
 - Barrier for N workers
- Asynchronous Parallel (ASP)
 - Update model for each gradient
 - No barrier
- Synchronous w/ Backup Workers
 - Update model w/ accrued gradients
 - Barrier for N of N+b workers







[Martín Abadi et al: TensorFlow: A System for Large-Scale Machine Learning. **OSDI 2016**]

Intro to LLMs

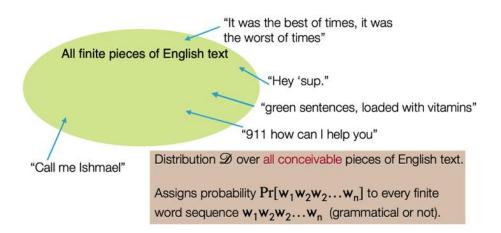
- Google Gemini
- ChatGPT
- Lamda
- Llama
- Gork
- Mistral
- Eliza (1966)

	Gemini Ultra	Gemini Pro	GPT-4	GPT-3.5	PaLM 2-L	Claude 2	Inflect- ion-2	Grok 1	LLAMA-2
MMLU Multiple-choice questions in 57 subjects (professional & academic) (Hendrycks et al., 2021a)	90.04% CoT@32*	79.13% CoT@8*	87.29% CoT@32 (via API**)	70% 5-shot	78.4% 5-shot	78.5% 5-shot CoT	79.6% 5-shot	73.0% 5-shot	68.0%***
	83.7% 5-shot	71.8% 5-shot	86.4% 5-shot (reported)						
GSM8K Grade-school math (Cobbe et al., 2021)	94.4% Maj1@32	86.5% Maj1@32	92.0% SFT & 5-shot CoT	57.1% 5-shot	80.0% 5-shot	88.0% _{0-shot}	81.4% 8-shot	62.9% 8-shot	56.8% 5-shot
MATH Math problems across 5 difficulty levels & 7 subdisciplines (Hendrycks et al., 2021b)	53.2% 4-shot	32.6% 4-shot	52.9% 4-shot (via API**)	34.1% 4-shot (via API**)	34.4% 4-shot	_	34.8%	23.9% 4-shot	13.5% 4-shot
			50.3% (Zheng et al., 2023)						
BIG-Bench-Hard Subset of hard BIG-bench tasks written as CoT prob- lems (Srivastava et al., 2022)	83.6% 3-shot	75.0% 3-shot	83.1% 3-shot (via API**)	66.6% 3-shot (via API**)	77.7% 3-shot	_	_	-	51.2% 3-shot
HumanEval Python coding tasks (Chen et al., 2021)	74.4% 0-shot (IT)	67.7% 0-shot (IT)	67.0% 0-shot (reported)	48.1% 0-shot	_	70.0% 0-shot	44.5% 0-shot	63.2% 0-shot	29.9% 0-shot
Natural2Code Python code generation. (New held-out set with no leakage on web)	74.9% 0-shot	69.6% 0-shot	73.9% 0-shot (via API**)	62.3% 0-shot (via API**)	_	_	_	_	-
DROP Reading comprehension & arithmetic. (metric: F1-score) (Dua et al., 2019)	82.4 Variable shots	74.1 Variable shots	80.9 3-shot (reported)	64.1 3-shot	82.0 Variable shots	_	_	_	_
HellaSwag (validation set) Common-sense multiple choice questions (Zellers et al., 2019)	87.8% 10-shot	84.7% 10-shot	95.3% 10-shot (reported)	85.5% 10-shot	86.8% 10-shot	_	89.0% 10-shot	-	80.0%***
WMT23 Machine translation (metric: BLEURT) (Tom et al., 2023)	74.4 1-shot (IT)	71.7 1-shot	73.8 1-shot (via API**)	_	72.7 1-shot	_	-	-	_

https://blog.google/technology/ai/google-gemini-ai/#sundar-note

Intro to LLMs

- Next work prediction
- A probabilistic model that assign probability to every finite sequence in English language
- considering context, position, grammar and structure
- Sentence "the cat set on the mat"
 - P(the cat sat on the map) = P(the)*P(cat|the) * P(sat|the cat) *P(on |the cat sat)*P(the|the cat sat on) *P(mat|the cat sat on the)



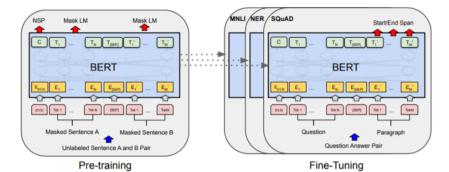
Source: COS 324

LLM Training

- Transformer based neural networks
- Pre-training (expensive)
 - Download ~10TB of text.
 - Get a cluster of ~6,000 GPUs.
 - Compress the text into a neural network, pay ~\$2M, wait ~12 days.
 - Obtain base model.

Fine Tuning

- Write labeling instructions
- Hire people (or use scale.ai!), collect 100K high quality ideal Q&A responses, and/or comparisons.
- Finetune base model on this data → ~1 day.
- Obtain assistant model.
- Run a lot of evaluations.



Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

LM

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // ____

https://ai.stanford.edu/blog/understanding-incontext/

https://www.youtube.com/watch?v=zjkBMFhNj_g

LLM Parameters

[Ashish Vaswani et. al., Attention is All you Need. NeurIPS 2017]

Transformer based neural networks

Source: Compiled by DIGITIMES Research, Aug. 2023 https://www.digitimes.com/news/a20231221VL202/2024-outlook-ai-edge-ai-llm.html

Q&A and Exam Preparation

Selected Example Questions

Multiple choice question (40/100)

- Given the dataset identify the type of missingness.
 - a. Missing Completely at Random (MCAR)
 - b. Missing at Random (MAR)
 - c. Missing Not at Random (MNAR)
 - d. All of above

Profession	Salary
Α	2000
С	5000
В	2300
С	?
С	?
Α	2000

Data Warehousing

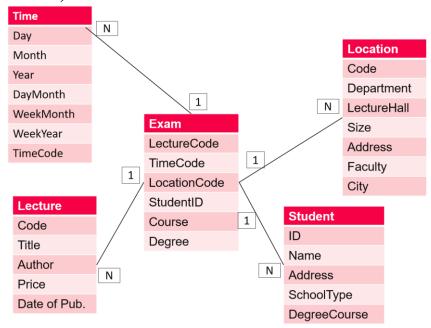
• Create a star schema from the given relational schema. Identify the fact and dimension tables and indicate the relationship type (cardinality) [10/100 points].

EXAM (TimeCode, LocationCode, Student, LectureCode, Course, Degree)

TIME(TimeCode, Day, Month, Year, WeekMonth, WeekYear, DayMonth)

LOCATION(LocationCode,LectureHall, Department, Faculty, Address, City)

STUDENT (ID, Name, Address, DegreeCourse)



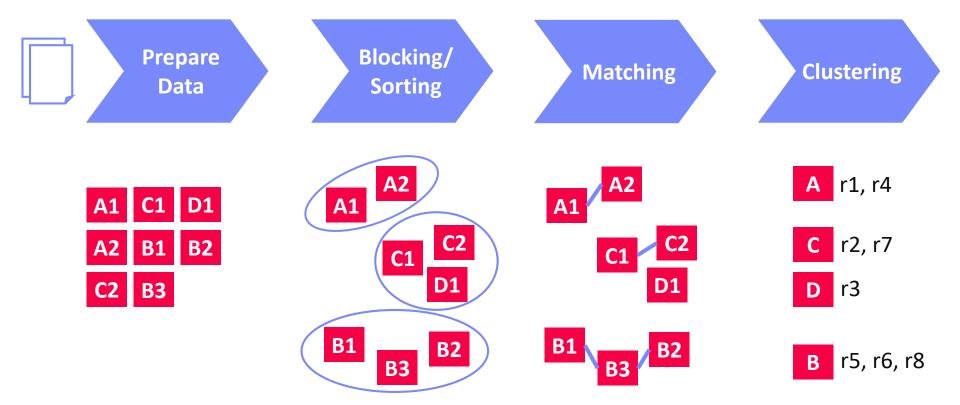
Message-oriented Middleware

Describe the Message Delivery Guarantees At-Most-Once, At-Least-Once and Exactly-Once, and indicate which of them require persistent storage before sending. [6/100 points]

Name	Description	Storage
At-Most-Once	Send and forget, never sent message twice (even on failures)	No
At-Least-Once	Store and forward, replay stream from (acknowledged) checkpoint	Yes
Exactly-Once	Store and forward, replay stream from (acknowledged) checkpoint, transactional delivery	Yes

Schema Matching / Entity Linking

 Explain the phases of a typical Entity Resolution Pipeline with example techniques for the individual phases. [20/100 points]



Data Parallel Computation / Stream Mining

Assume three nodes with CPU and memory capacity N1 (32 cores, 64 GB), N2 (16 cores, 64 GB), N3 (64 cores, 128 GB) and a stream of resource requests R1...R7. Schedule these requests to available resources (assign requests to nodes) in order to maximize the number of fulfilled requests. (4 points)

R1: (30 cores, 8 GB)

R2: (6 cores, 32 GB)	
----------------------	--

R3: (8 cores, 64 GB)

R4: (10 cores, 32 GB)

	R5:	(8	cores,	32	GB)	١
_	113.	O	COIES,	JZ	UD	,

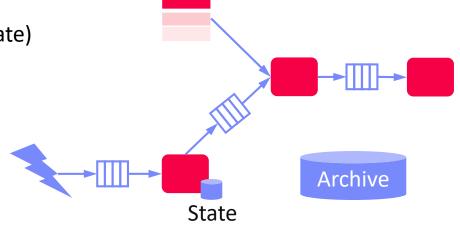
R6: (16 cores, 64 GB)

R7: (16 cores, 16 GB)

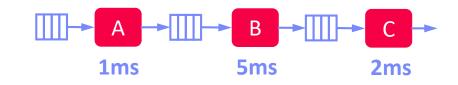
	N1 (32/64)	N2 (16/64)	N3 (64/128)
requests	R6	R2, R4	R1, R3, R5, R7
utilization	16/64	16/64	62/120

Stream Processing

- Describe the concept of Continuous Queries and a Basic System
 Infrastructure to process them over incoming data streams. [8/100 points]
 - Deployed Data flow graphs
 - Nodes: asynchronous ops (w/ state)
 (e.g., separate threads / queues)
 - Edges: data dependencies (tuple/message streams)
 - Push model: data production controlled by source



Given the continuous query
 A-B-C, what are the resulting
 perf characteristics? [4 points]



- Max throughput
- Min tuple latency

$$1/\max(C(op_i)) = 1/5 \text{ tuples/ms} = 200 \text{ tuples/s}$$

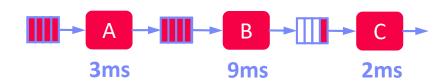
 $sum(C(op_i)) = 1ms + 5ms + 2ms = 8ms$

Stream Processing, cont.

 Describe the three classes of techniques for handling overload situations in continuous queries? [6/100 points]

#1 Back Pressure

- Graceful handling of overload w/o data loss
- Slow down sources
- E.g., blocking queues



Self-adjusting operator scheduling Pipeline runs at rate of slowest op

#2 Load Shedding

- #1 Random-sampling-based load shedding
- #2 Relevance-based load shedding
- #3 Summary-based load shedding (synopses)
- #3 Distributed Stream Processing (see last part)
 - Data flow partitioning (distribute the query)
 - Key range partitioning (distribute the data stream

Summary and Q&A

- Landscape of ML Systems
- Distributed Parameter Servers
- Large Language Models
- Q&A and Exam Preparation

(please, participate in the course evaluation)

- Oral Exam
 - Starting Jan 22
- Exam
 - Exam date: Feb 02

